版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市玉湖中学2022年度高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有一个长方体容器,装的水恰好占其容积的一半;表示水平的桌面,容器一边紧贴桌面,沿将其翻转使之倾斜,最后水面(阴影部分)与其各侧棱的交点分别是(如图),设翻转后容器中的水形成的几何体是,翻转过程中水和容器接触面积为,则下列说法正确的是
(
)A.是棱柱,逐渐增大
B.是棱柱,始终不变C.是棱台,逐渐增大D.是棱台,始终不变参考答案:B2.若,则(
)A.
B.
C.
D.参考答案:D3.数列中,如果(n=1,2,3,…),那么这个数列是
(
)A.公差为2的等差数列
B.公差为3的等差数列C.首项为3的等比数列
D.首项为1的等比数列参考答案:B4.函数的单调递增区间是 (
)A.
B.(0,3)
C.(1,4)
D.
参考答案:D略5.观察图示图形规律,在其右下角的空格内画上合适的图形为参考答案:
A略6.如图,在长方体中,点分别是棱上的动点,,直线与平面所成的角为30°,则的面积的最小值是(
)A.
B.8
C.
D.10
参考答案:B以C为原点,以CD,CB,CC′为坐标轴建立空间直角坐标系,如图所示:
则C(0,0,0),设P(0,a,0),Q(b,0,0),于是0<a≤4,0<b≤3.设平面PQC′的一个法向量为则令z=1,得a2b2≥2ab,解得ab≥8.
∴当ab=8时,S△PQC=4,棱锥C′-PQC的体积最小,
∵直线CC′与平面PQC′所成的角为30°,∴C到平面PQC′的距离d=2∵VC′-PQC=VC-PQC′,故选B
7.若双曲线的离心率为,则其渐近线方程为()A.y=±2x
B.y= C. D.参考答案:B8.若数列{an}满足,则称数列{an}为“调和数列”.已知正项数列为“调和数列”,且b1+b2+…+b9=90,则b4·b6的最大值是()A.10 B.100 C.200 D.400参考答案:B9.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,已知=,=,=,则用向量,,可表示向量为(
)A.++ B.﹣++ C.﹣+ D.﹣+﹣参考答案:B【考点】平面向量的基本定理及其意义.【专题】平面向量及应用;空间向量及应用.【分析】利用空间向量的平行六面体法则即可得出.【解答】解:===﹣.故选:B.【点评】本题考查了空间向量的平行六面体法则,属于基础题.10.已知变量x,y满足约束条件,则的最大值为()A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知函数则
▲
。参考答案:012.如图,在平面直角坐标系中,设△ABC的顶点分别为,点是线段OA上一点(异于端点),均为非零实数.直线BP、CP分别交AC、AB于点E,F.一同学已正确地求出直线的方程为,请你完成直线的方程:
.
参考答案:(1/c-1/b)13.若椭圆+=1的离心率为,则实数k的值为.参考答案:5或12【考点】双曲线的简单性质.【分析】椭圆+=1的离心率为,=或=,即可求出实数k的值.【解答】解:∵椭圆+=1的离心率为,∴=或=,∴k=5或12,故答案为:5或12.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.14.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是_______.参考答案:方法一:基本事件全体Ω={男男,男女,女男,女女},记事件A为“有一个女孩”,则P(A)=,记事件B为“另一个是男孩”,则AB就是事件“一个男孩一个女孩”,P(AB)=,故在已知这个家庭有一个是女孩的条件下,另一个是男孩的概率P(B|A)==.方法二:记有一个女孩的基本事件的全体Ω′={男女,女男,女女},则另一个是男孩含有基本事件2个,故这个概率是.15.袋内有8个白球和2个红球,每次从随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为
.参考答案:解析:第4次恰好取完所有红球的概率为16.已知函数的单调递减区间是(-3,1),则的值是
.参考答案:略17.已知曲线的极坐标方程分别为和,设点在曲线上,点在上,则的最小值为
..参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求△MON的面积.参考答案:(1)直线l的普通方程为x+y-4=0.曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)4【分析】(1)将直线l参数方程中的消去,即可得直线l的普通方程,对曲线C的极坐标方程两边同时乘以,利用可得曲线C的直角坐标方程;(2)求出点到直线的距离,再求出的弦长,从而得出△MON的面积.【详解】解:(1)由题意有,得,x+y=4,直线l的普通方程为x+y-4=0.因为ρ=4sin所以ρ=2sinθ+2cosθ,两边同时乘以得,ρ2=2ρsinθ+2ρcosθ,因为,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)∵原点O到直线l的距离直线l过圆C的圆心(,1),∴|MN|=2r=4,所以△MON的面积S=|MN|×d=4.【点睛】本题考查了直线与圆的极坐标方程与普通方程、参数方程与普通方程的互化知识,解题的关键是正确使用这一转化公式,还考查了直线与圆的位置关系等知识.19.在直角坐标系xOy中,直线l的参数方程为(t为参数,),以原点O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为:.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当到直线l的距离最大时,求.参考答案:(1);(2)16.【分析】(1)直接利用极坐标和直角坐标互化的公式求曲线的直角坐标方程;(2)设,当到直线的距离最大时,得到,故.再利用直线的参数方程的弦长公式求.【详解】解:(1)曲线:,即:.∴曲线的标准方程为:.(2)设,当到直线的距离最大时,,故.∴的参数方程为(为参数),将直线的参数方程代入得:.∴,∴.【点睛】本题主要考查极坐标方程与直角方程坐标的互化,考查直线参数方程t的几何意义的应用,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.20.数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}满足b3=3,b5=9.(1)分别求数列{an},{bn}的通项公式;(2)设Cn=(n∈N*),求证Cn+1<Cn.参考答案:【考点】数列递推式;等差数列与等比数列的综合.【分析】(1)①利用,及等比数列的通项公式即可得出an;②利用等差数列的通项公式即可得出bn;(2)由即可得到cn+1<cn;利用二项式定理可得3n=(1+2)n≥3n,即可证明.【解答】解:(1)①当n≥2时,由an+1=2Sn+1,an=2Sn﹣1+1,得an+1﹣an=2an,即an+1=3an.由a1=1,∴a2=2a1+1=3=3a1.∵a1=1≠0,∴数列{an}是以1为首项,3为公比的等比数列.∴.②等差数列{bn}满足b3=3,b5=9.设公差为d,则,解得.∴bn=﹣3+(n﹣1)×3=3n﹣6.(2)由(1)可得=.∴=cn.∵3n=(1+2)n=…+2n≥3n,∴.21.(本小题共15分)已知.(1)求函数的图像在处的切线方程;
(2)设实数,求函数在上的最大值.
参考答案:(1)定义域为
又………4分
函数的在处的切线方程为:,即
………7分
(2)令得
当,,单调递减,…ks5u当,,单调递增.………10分在上的最大值
当时,
当时,,
………15分22.已知A、B、C为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同(实习生)
- 2024年度产品代销协议及仓储物流服务合同
- 2024年度保险代理合同(人寿保险业务)
- 液压大门操作器市场需求与消费特点分析
- 2024年度公共交通车辆采购合同
- 纳米粒度分析仪产品入市调查研究报告
- 制药剂专用板框压滤机市场发展现状调查及供需格局分析预测报告
- 2024年度影视制作许可电子合同
- 2024年度别墅区居民公约制定合同
- 2024年度建筑智能化系统集成合同
- 定期体检 预防常见病 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 期中测试卷(1-4单元)(试题)2024-2025学年六年级上册试题人教版
- 电子发票管理系统开发与维护合同
- 现代服务业课件
- 浙江省杭州市2024年中考英语真题(含答案)
- 成人术中非计划低体温预防与护理学习与预实践
- 生活饮用水、公共场所卫生管理系列国家强制性标准解读答案-2024年全国疾控系统“大学习”活动
- 《算法设计与分析基础》(Python语言描述) 课件 第5章回溯法1
- 人音版八年级上册第二单元 多彩音乐剧 《雪绒花》教案
- 2024年中国交流低噪声风机市场调查研究报告
- 2024-2030年中国海洋工程行业市场发展分析及前景趋势与投资前景研究报告
评论
0/150
提交评论