2022年河北省名校高考冲刺模拟数学试题含解析_第1页
2022年河北省名校高考冲刺模拟数学试题含解析_第2页
2022年河北省名校高考冲刺模拟数学试题含解析_第3页
2022年河北省名校高考冲刺模拟数学试题含解析_第4页
2022年河北省名校高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的二项式展开式中二项式系数的和为32,则正整数的值为()A.7 B.6 C.5 D.42.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]3.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A. B. C. D.4.设,且,则()A. B. C. D.5.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.46.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.7.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.8.双曲线的渐近线方程为()A. B.C. D.9.已知,,由程序框图输出的为()A.1 B.0 C. D.10.若复数满足,则()A. B. C.2 D.11.设i为数单位,为z的共轭复数,若,则()A. B. C. D.12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.14.三棱锥中,点是斜边上一点.给出下列四个命题:①若平面,则三棱锥的四个面都是直角三角形;②若,,,平面,则三棱锥的外接球体积为;③若,,,在平面上的射影是内心,则三棱锥的体积为2;④若,,,平面,则直线与平面所成的最大角为.其中正确命题的序号是__________.(把你认为正确命题的序号都填上)15.已知向量=(-4,3),=(6,m),且,则m=__________.16.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.18.(12分)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.19.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.21.(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.22.(10分)已知函数f(x)=x-lnx,g(x)=x2-ax.(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足>1,求实数a的取值范围;(3)若∃x∈(0,1],使f(x)≥成立,求实数a的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由二项式系数性质,的展开式中所有二项式系数和为计算.【详解】的二项展开式中二项式系数和为,.故选:C.【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键.2.D【解析】

设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3.C【解析】

首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.4.C【解析】

将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.5.D【解析】可以是共4个,选D.6.D【解析】

由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.7.D【解析】

由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.8.A【解析】

将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.9.D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.10.D【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.11.A【解析】

由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.12.A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:

沿上棱两端向底面作垂面,且使垂面与上棱垂直,

则将几何体分成两个四棱锥和1个直三棱柱,

则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.14.①②③【解析】

对①,由线面平行的性质可判断正确;对②,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解;对③,结合题意作出图形,由勾股定理和内接圆对应面积公式求出锥体的高,则可求解;对④,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误;【详解】对于①,因为平面,所以,,,又,所以平面,所以,故四个面都是直角三角形,∴①正确;对于②,若,,,平面,∴三棱锥的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设内心是,则平面,连接,则有,又内切圆半径,所以,,故,∴三棱锥的体积为,∴③正确;对于④,∵若,平面,则直线与平面所成的角最大时,点与点重合,在中,,∴,即直线与平面所成的最大角为,∴④不正确,故答案为:①②③.【点睛】本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档题15.8.【解析】

利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.16.【解析】

取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)证明见解析【解析】

(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,,,在上单调递增,又,时,;时,,即时,;时,,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,,,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,①当时,恒成立,在上单调递增.,,,存在满足时,使得.又单调递增,所以为唯一解.②当时,二次函数,满足,则恒成立,在上单调递增.,,存在使得,又在上单调递增,为唯一解.③当时,二次函数,满足,此时有两个不同的解,不妨设,,,列表如下:00↗极大值↘极小值↗由表可知,当时,的极大值为.,,,,,..下面来证明,构造函数,则,当时,,此时单调递增,,时,,,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.18.(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【解析】

(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.【详解】(1)证明:因为,,,所以,即.又因为,,所以,,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,,,.设,,,,代入上式得,,,所以.设平面的一个法向量为,,,由,得.令,得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于平面法向量夹角的余弦值,要注意结合图形分析.19.(1)证明见解析(2)【解析】

(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分,,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,①当时,,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,②当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.③当时,,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.20.(1),;(2).【解析】

(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.21.(1)见解析(2)【解析】试题分析:(1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立;(2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,∴平面,∴.由即及为的中点,可得为等边三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴为直线与所成的角,由(1)可得,∴,∴,设,则,取的中点,连接,过作的平行线,可建立如图所示的空间直角坐标系,则,∴,所以,设为平面的法向量,则,即,取,则为平面的一个法向量,∵,则直线与平面所成角的正弦值为.点睛:判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.22.(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解.(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,从而构造函数F(x)=h(x)-x在(0,+∞)上单调递增,进而等价于F′(x)≥0在(0,+∞)上恒成立来加以研究.(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a≤,再利用导数求函数M(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论