版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋城市土沃中学2021-2022学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是直线,是两个不同的平面,则下列结论正确的是(
)A.若∥,∥,则
B.若,⊥,则⊥C.若⊥,⊥,则⊥
D.若⊥,,则⊥参考答案:B略2.已知直线l⊥平面α,直线m?平面β,下面有三个命题:①α∥β?l⊥m;②α⊥β?l∥m;③l∥m?α⊥β;则真命题的个数为()A.0 B.1 C.2 D.3参考答案:C【考点】命题的真假判断与应用;平面与平面之间的位置关系.【分析】①利用面面平行的性质判断.②利用线面垂直的性质判断.③利用面面垂直的判定定理进行判断.【解答】解:①若α∥β,因为l⊥平面α,所以l⊥平面β,因为直线m?平面β,所以l⊥m,即①正确.②当α⊥β,直线l与平面α关系不确定,所以l∥m不一定成立,所以②错误.③当l∥m时,因为l⊥平面α,所以m⊥平面α,又m?平面β,则根据面面垂直的判定定理可知α⊥β成立,所以③正确.故正确的命题为①③.故选C.【点评】本题主要考查空间直线和平面位置关系的判断,要求熟练掌握相应的判定定理和性质定理.3.某班一共有52名同学,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是(
)A.13
B.19
C.20
D.51参考答案:C略4.
参考答案:D5.函数在点处的切线方程是(
)A.
B.
C.
D.参考答案:C略6.正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有(
)条
A.3
B.4
C.6
D.8参考答案:C7.在区间上随机取一个数,的值介于0到之间的概率(
)A.
B.
C.
D.
参考答案:A8.下列命题中,正确的是()A.sin(+α)=cosα B.常数数列一定是等比数列C.若0<a<,则ab<1 D.x+≥2参考答案:C【考点】命题的真假判断与应用.【分析】A,sin(+α)=﹣cosα,;B,数列0,0,0,…是常数数列,但不是等比数列;C,在0<a<的两边同时乘以正数b,得到ab<1;对于D,当x<0时,不满足x+≥2.【解答】解:对于A,sin(+α)=﹣cosα,故错;对于B,数列0,0,0,…是常数数列,但不是等比数列,故错;对于C,在0<a<的两边同时乘以正数b,得到ab<1,故正确;对于D,当x<0时,不满足x+≥2,故错.故选:C.9.抛物线的准线方程为,则的值为
(A)
(B)
(C)
(D)参考答案:B略10.如图,在圆心角为,半径为1的扇形中,在弦AB上任取一点C,则的概率为(
).A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知,则
.参考答案:略12.在下列命题中①函数f(x)=在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则f(x)dx=2f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为
(写出所有正确命题的序号).参考答案:②④⑤【考点】2K:命题的真假判断与应用.【分析】①中,函数f(x)=在定义域内的区间(﹣∞,0)和(0,+∞)上有单调性;②中,由题意可以推导出f(﹣x)=f(x),即f(x)是偶函数;③中,由定积分的几何意义与被积函数是奇函数,得出f(x)dx的值;④中,当a+b+c=0时,得出f′(x)有二不等零点,f(x)有极值;当f(x)有极值时,f′(x)有二不等零点,不能得出a+b+c=0;⑤中,由f′(x)≥0得出a>﹣b时,f(a)>f(﹣b);又f(﹣x)=﹣f(x),得出f(﹣b)=﹣f(b);从而得出f(a)+f(b)>0.【解答】解:对于①,函数f(x)=在定义域内的区间(﹣∞,0)和(0,+∞)上是减函数,∴①错误.对于②,由题意得f(2﹣(x+2))=f(2+(x+2)),即f(﹣x)=f(4+x)=f(x),∴f(x)是偶函数;∴②正确.对于③,根据定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,且被积函数f(x)是奇函数,得f(x)dx=0,∴③错误.对于④,∵f(x)=ax3+bx2+cx+d(a≠0),∴f′(x)=3ax2+2bx+c;当a+b+c=0时,(2b)2﹣4×3a×(﹣a﹣b)=4b2+12a2+12ab=4+3a2>0,∴f′(x)有二不等零点,f(x)有极值;当f(x)有极值时,f′(x)=3ax2+2bx+c有二不等零点,即4b2﹣12ac>0,不能得出a+b+c=0;∴是充分不必要条件,④正确.对于⑤,∵f(x)=x﹣sinx,∴f′(x)=1﹣cosx≥0,∴f(x)是增函数,∴当a+b>0时,a>﹣b,∴f(a)>f(﹣b);又∵f(﹣x)=﹣x﹣sin(﹣x)=﹣(x﹣sinx)=﹣f(x),∴f(x)是奇函数,∴f(﹣b)=﹣f(b);∴f(a)>﹣f(b),即f(a)+f(b)>0;∴⑤正确.综上,正确的命题是②④⑤;故答案为:②④⑤.【点评】本题通过命题真假的判定,考查函数的单调性、周期性、奇偶性以及求定积分和利用导数研究函数极值的问题,解题时应对每一个命题认真分析,以便作出正确的选择,是较难的综合题.13.已知△ABC的三个顶点的坐标分别为A(0,3),B(4,1),C(3,4),点P(x,y)在△ABC的边界及其内部运动,则的最大值为
,最小值为
.参考答案:4、2.514.根据如图所示的算法流程图,可知输出的结果i为________.参考答案:715.给出以下结论:①命题“若,则”的逆否命题为“若,则”;②“”是“”的充分条件;③命题“若,则方程有实根”的逆命题为真命题;④命题“若,则且”的否命题是真命题.则其中错误的是__________.(填序号)参考答案:③【分析】直接写出命题的逆否命题判断①;由充分必要条件的判定方法判断②;举例说明③错误;写出命题的否命题判断④;【详解】①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”,故①正确;②x=4?x2﹣3x﹣4=0;由x2﹣3x﹣4=0,解得:x=﹣1或x=4.∴“x=4”是“x2﹣3x﹣4=0”的充分条件,故②正确;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题,如m=0时,方程x2+x﹣m=0有实根;④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0或n≠0”,是真命题故④正确;故答案为:③.【点睛】本题考查命题的真假判断与应用,考查了命题的否命题和逆否命题,训练了充分必要条件的判定方法,属中档题.16.如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆(x﹣1)2+y2=于点A,B,C,D四点,则9|AB|+4|CD|的最小值为.参考答案:【考点】K8:抛物线的简单性质.【分析】求出||AB|=xA+,|CD|=xD+,当l⊥x轴时,则xD=xA=1,9|AB|+4|CD|=.当l:y=k(x﹣1)时,代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,9|AB|+4|CD|=.【解答】解:∵y2=4x,焦点F(1,0),准线l0:x=﹣1由定义得:|AF|=xA+1,又∵|AF|=|AB|+,∴|AB|=xA+同理:|CD|=xD+,当l⊥x轴时,则xD=xA=1,∴9|AB|+4|CD|=.当l:y=k(x﹣1)时,代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,∴xAxD=1,xA+xD=1,∴9|AB|+4|CD|=.综上所述4|AB|+9|CD|的最小值为.故答案为:.17.将三位老师分配到4所学校实施精准帮扶,若每位老师只去一所学校,每所学校最多去2人,则不同的分配方法有_____________种(用数字作答).参考答案:60【分析】分2种情况讨论:三位老师去三所学校;两位老师一所学校,另一位老师去一所学校,分别求出每一种情况的分配方法数目,由加法原理计算可得结果.【详解】根据题意,分2种情况讨论:若三位老师去三所学校,则有种分配方法;若两位老师一所学校,另一位老师去一所学校,则有种分配方法,所以共有种不同的分配方法,故答案为60.【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分16分)已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率。(1)求椭圆的标准方程;(2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线轴,连结AQ并延长交直线于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系。参考答案:(1)因为椭圆经过点(0,1),所以,又椭圆的离心率得, 即,由得,所以, 故所求椭圆方程为。(6分) (2)设,则,设,∵HP=PQ,∴ 即,将代入得, 所以Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上。 又A(-2,0),直线AQ的方程为,令,则, 又B(2,0),N为MB的中点,∴,, ∴ ,∴,∴直线QN与圆O相切。(16分)19.箱中装有4个白球和个黑球.规定取出一个白球得2分,取出一个黑球得1分,现从箱中任取3个球,假设每个球被取出的可能性都相等.记随机变量X为取出的3个球所得分数之和.(1)若,求m的值;(2)当时,求X的分布列.参考答案:(1)1;(2)分布列见解析.【分析】(1)通过分析可知时,取出的个球都是白球,根据超几何分布的概率公式构造方程可求得结果;(2)首先确定所有可能的取值为:;利用超几何分布的概率公式分别计算每个取值对应的概率,从而可得分布列.【详解】(1)由题意得:取出的个球都是白球时,随机变量,即:,解得:(2)由题意得:所有可能的取值为:则;;;.的分布列为:【点睛】本题考查服从超几何分布的随机变量的概率及分布列的求解问题,关键是能够明确随机变量所服从的分布类型,从而利用对应的公式来进行求解.20.(12分)如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;(Ⅲ)求二面角B-EF-A的正切值。参考答案:(I)解:因为四边形ADEF是正方形,所以FA//ED.故为异面直线CE与AF所成的角.
…………2分因为FA平面ABCD,所以FACD.故EDCD.在Rt△CDE中,CD=1,ED=,CE==3,故cos==.所以异面直线CE和AF所成角的余弦值为.
………2分(Ⅱ)证明:过点B作BG//CD,交AD于点G,则.由,可得BGAB,从而CDAB,又CDFA,FAAB=A,所以CD平面ABF.
………4分(Ⅲ)解:由(Ⅱ)及已知,可得AG=,即G为AD的中点.取EF的中点N,连接GN,则GNEF,因为BC//AD,所以BC//EF.过点N作NMEF,交BC于M,则为二面角B-EF-A的平面角。
。。。。。。。。。。。。。。。。2分连接GM,可得AD平面GNM,故ADGM.从而BCGM.由已知,可得GM=.由NG//FA,FAGM,得NGGM.在Rt△NGM中,tan,所以二面角B-EF-A的正切值为.
。。。。。。。。。。。。。。。。。。2分略21.(12分)已知函数.(1)当时,求函数的单调区间;
(2)当时,不等式恒成立,求实数的取值范围.
(3)求证:(其中,
e是自然对数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工人劳动合同样本
- 2024年度互联网金融服务平台技术开发与运营合同
- 2024年工程文件保密与转让协议
- 2024医疗器械销售及市场推广合同
- 2024年公共交通乘车意外伤害保险合同
- 2024年度居民搬家服务定制合同
- 2024年工程建设的担保协议
- 2024年劳动力外包合作协议
- 2024年度股权转让合同模板
- 2024人工智能技术研发合同-科技创新合作
- 《功能材料概论》课件
- 工程师职称代评销售话术
- POCT临床应用与质量管理
- 私立民办初中学校项目融资计划书
- 脓毒性休克病人护理查房课件
- 《本量利分析》课件
- 2023光伏组件隐性缺陷检测技术规范
- 2024年财务分析师就业前景及技能要求精
- 关于文明的课件
- 30题安全员岗位常见面试问题含HR问题考察点及参考回答
- 2024年会计专业大学生职业规划计划书
评论
0/150
提交评论