




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市曲沃县第二中学2021-2022学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是两平面,a,b是两直线.下列说法正确的是(
)①若,则②若,则③若,则④若,,,,则A.①③ B.②③④ C.①②④ D.①②③④参考答案:D由平行公理知①对,由线面垂直的性质定理知②对,由线面垂直及面面平行定理知③对,由面面垂直性质定理知④对.2.若是两个不同的平面,下列四个条件:①存在一条直线,;②存在一个平面,;③存在两条平行直线∥∥;④存在两条异面直线∥∥.那么可以是∥的充分条件有(
)A.4个
B.3个
C.2个
D.1个参考答案:C3.“”是“函数f(x)=cosx与函数g(x)=sin(x+?)的图象重合”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:当时,由诱导公式化简可得图象充分;而当图象重合时可得,k∈Z,由充要条件的定义可得.解答:解:当时,可得函数g(x)=sin(x+)=cosx,故图象重合;当“函数f(x)=cosx与函数g(x)=sin(x+?)的图象重合”时,可取,k∈Z即可,故“”是“函数f(x)=cosx与函数g(x)=sin(x+?)的图象重合”的充分不必要条件.故选A点评:本题考查充要条件的判断,涉及三角函数的性质,属基础题.4.已知集合,,则A∩B=(
)A.(-1,4) B.(0,3] C.[3,4) D.(3,4)参考答案:C【分析】先求出集合A,B,由此能求出.【详解】由变形,得,解得或,∴或.又∵,∴.故选:C.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.5.将函数y=sin()的图像先向左平移,然后再将横坐标伸长为原来得2倍,则所对应图像的解析式为
A.y=-cosx
B.
y=sin4x
C.y=sinx
D.y=sin(x-)
参考答案:B6.已知函数,使则b-a的最小值为A.
B.
C.
D.参考答案:D令,则,从而构造函数,求导得,解得极值点因此b-a的最小值为h(1/2)=2+ln27.若函数的图象与轴有公共点,则的取值范围是(
)A.
B.
C.
D.参考答案:A8.已知函数,则关于函数的零点情况,下列说法中正确的是
A.当时,函数有且仅有一个零点. B.当或或或时,函数有两个零点. C.当或时,有三个零点. D.函数最多可能有四个零点.参考答案:C9.已知双曲线与椭圆共顶点,且焦距是6,此双曲线的渐近线是
A.
B.C.D.参考答案:B略10.若函数的图象的顶点在第四象限,则函数的图象是(
)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若函数满足,且时,,函数,则函数在区间内的零点的个数为
.参考答案:9略12.在中,,则= 参考答案:113.若∈,=,则-的值是
.参考答案:14.(5分)若二项式(+2)n(n∈N*)的展开式中的第5项是常数项,则n=.参考答案:6【考点】:二项式系数的性质.【专题】:二项式定理.【分析】:先求出二项式展开式的通项公式,再根据r=4时,x的幂指数等于0,求得n的值.解:二项式(+2)n(n∈N*)的展开式的通项公式为Tr+1=?2r?,由于第5项是常数项,可得﹣n=0,∴n=6,故答案为:6.【点评】:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.函数的单调递减区间是________________________.参考答案:(2,+∞)略16.已知函数,则
.参考答案:617.一个几何体的三视图如图所示,则该几何体的表面积为
.
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=alnx﹣x+1(a∈R).(1)求f(x)的单调区间;(2)若f(x)≤0在(0,+∞)上恒成立,求所有实数a的值;(3)证明:(n∈N,n>1)参考答案:【考点】利用导数研究函数的单调性.【分析】(1)求导,利用导数得出函数单调性;(2)对a进行分类:当a≤0时,f(x)递减,又知f(1)=0可得f(x)>0(x∈(0,1);当a>0时,只需求f(x)max=f(a)=alna﹣a+1,让最大值小于等于零即可;(3)利用(2)的结论,对式子变形可得=<=.【解答】解:(1)f'(x)=当a≤0时,f'(x)<0,f(x)递减;当a>0时,x∈(0,a)时,f'(x)>0,f(x)递增;x∈(a+∞)时,f'(x)<0,f(x)递减;(2)由(1)知,当a≤0时,f(x)递减,∵f(1)=0∴f(x)≤0在(0,+∞)上不恒成立,当a>0时,x∈(0,a)时,f'(x)>0,f(x)递增;x∈(a+∞)时,f'(x)<0,f(x)递减;∴f(x)max=f(a)=alna﹣a+1令g(a)=alna﹣a+1∴g'(a)=lna∴g(a)的最小值为g(1)=0∴alna﹣a+1≤0的解为a=1;(3)由(2)知:lnx<x﹣1x>1∵=<=∴++…+<++…+=.19.(12分)据某地气象部分统计,该地区每年最低气温在—2℃以下的概率为,设ξ为该地区从2005年到2010年最低气温在—2℃以下的年数。
(I)求ξ的期望和方差;
(II)求该地区从2005年到2010年至少遇到一次最低气温在—2℃以下的概率;
(III)求ξ=3,且在2007年首次遇到最低气温在—2℃以下的概率。参考答案:解析:(I)将每年的气温情况看做一次试验,则遇到最低气温在—2℃以下的概率为,且每次实验结果是相互独立的,故
…………2分
所以
…………4分
(II)该地区从2005年到2010年至少遇到一次最低气温在—2℃以下的事件A的对立事件为:6年都不遇到最低气温在—2℃以下,所以
…………8分
(III)设,且在2007年首次遇到最低气温在—2℃以下的事件B,则
…………12分20.设函数f(x)=﹣ax,e为自然对数的底数.(Ⅰ)若函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,求实数a,b的值;(Ⅱ)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.参考答案:【考点】导数在最大值、最小值问题中的应用.【分析】(I)﹣a(x>0,且x≠1),由题意可得f′(e2)=﹣a=,f(e2)==﹣,联立解得即可.(II)当b=1时,f(x)=,f′(x)=,由x∈[e,e2],可得.由f′(x)+a==﹣+,可得[f′(x)+a]max=,x∈[e,e2].存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立?x∈[e,e2],f(x)min≤f(x)max+a=,对a分类讨论解出即可.【解答】解:(I)﹣a(x>0,且x≠1),∵函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,∴f′(e2)=﹣a=,f(e2)==﹣,联立解得a=b=1.(II)当b=1时,f(x)=,f′(x)=,∵x∈[e,e2],∴lnx∈[1,2],.∴f′(x)+a==﹣+,∴[f′(x)+a]max=,x∈[e,e2].存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立?x∈[e,e2],f(x)min≤f(x)max+a=,①当a时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=,解得a≥.②当a时,由f′(x)=﹣a在[e,e2]上的值域为.(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=,不合题意,舍去.(ii)当﹣a<0时,即时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0,x0∈(e,e2).∴a≥,与矛盾.(或构造函数即可).综上可得:a的最小值为.21.某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为等;分数在内,记为等;分数在内,记为等;60分以下,记为等.同时认定为合格,为不合格.已知甲,乙两所学校学生的原始成绩均分布在内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为的所有数据茎叶图如图2所示.(Ⅰ)求图1中的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在选取的样本中,从甲,乙两校等级的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中甲校的学生人数,求随机变量的分布列和数学期望.参考答案:(Ⅰ)由题意,可知,∴................2分∴甲学校的合格率为........................3分而乙学校的合格率为.................4分∴甲、乙两校的合格率均为96%................5分(Ⅱ)样本中甲校等级的学生人数为....................6分而乙校等级的学生人数为4.∴随机抽取3人中,甲校学生人数的可能取值为0,1,2,3...........7分∴∴的分布列为0123...............
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业租赁管理合同协议
- 专柜装修合同装修合同协议
- 房屋转让协议合同书
- 聘请劳务合同
- 安置房买卖协议合同
- 小学六英语试卷答案
- 卖鱼销售合同范本
- 个人一周工作计划
- 冷冻品供货合同范本
- 三年级下册音乐教案
- 《工程合同管理与招投标实训》课程电子教案
- 标本溢洒应急预案
- 药品类体外诊断试剂专项培训课件
- 2024年有关对外担保-股东会决议范本
- 老旧小区改造工程施工组织设计方案
- 建筑幕墙工程检测知识考试题库500题(含答案)
- 1shopee课程简介认识虾皮
- +一次函数复习课+教学设计 中考数学一轮复习(北师大版)
- 人教版一年级数学下册全册教案(表格式)
- 4.2基因表达与性状的关系2表观遗传高一下学期生物人教版必修2
- 11BS4排水工程华北标图集
评论
0/150
提交评论