版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市舒城县南港中学2021-2022学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.x=2是=0的(
)A
充分条件
B
必要条件C
充要条件
D既不充分也不必要条件参考答案:C略2.已知不等式的解集为{},则不等式的解集为()
A.{}
B.{}
C.{}
D.{}参考答案:C3.已知离散型随机变量X的分布列为X123pa
则X的数学期望E(x)=(
)A.
B.2
C.
D.3参考答案:A4.由曲线与直线,围成封闭图形的面积为(
)A.
B.4
C.
D.6参考答案:A5.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【分析】求出的解集,根据两解集的包含关系确定.【详解】等价于,故推不出;由能推出。故“”是“”的必要不充分条件。故选B。【点睛】充要条件的三种判断方法:(1)定义法:根据p?q,q?p进行判断;(2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.6.函数f(x)=sinxcosx﹣cos2x+在区间[0,]上的最小值是()A.﹣1 B.﹣ C.1 D.0参考答案:B【考点】三角函数的最值.【分析】把函数解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式积特殊角的三角函数值化为一个角的正弦函数,由x的范围求出这个角的范围,利用正弦函数的图象与性质即可求出f(x)在区间[0,]上的最小值【解答】解:∵f(x)=sinxcosx﹣cos2x+=sin2x﹣cos2x=sin(2x﹣)∴当x∈[0,]时,∴﹣≤2x﹣≤,∴当2x﹣=﹣时,函数的最小值为,故选B.7.已知数列{an}满足an=an﹣1+an﹣2(n>2),且a2015=1,a2017=﹣1,则a2000=()A.0 B.﹣3 C.﹣4 D.﹣18参考答案:D【考点】数列递推式.【分析】由数列{an}满足an=an﹣1+an﹣2(n>2),且a2015=1,a2017=﹣1,利用递推思想依次求出a2016,a2014,a2013,a2012,a2011,a2010.【解答】解:∵数列{an}满足an=an﹣1+an﹣2(n>2),∴an﹣1=an﹣an﹣2,∵a2015=1,a2017=﹣1,∴a2016=a2017﹣a2015=(﹣1)﹣1=﹣2,a2015=a2016﹣a2014,即1=﹣2﹣a2014,解得a2014=﹣3,a2014=a2015﹣a2013,即﹣3=1﹣a2013,解得a2013=4,a2013=a2014﹣a2012,即4=﹣3﹣a2012,解得a2012=﹣7,a2012=a2013﹣a2011,即﹣7=4﹣a2011,解得a2011=11,a2011=a2012﹣a2010,即11=﹣7﹣a2010,解得a2010=﹣18.∴a2000=﹣18.故选:D.8.在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD是以∠BAD为钝角的三角形的概率为()A. B. C. D.参考答案:B【考点】CF:几何概型.【分析】本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为6的一条线段,满足条件的事件是组成钝角三角形,根据等可能事件的概率得到结果根据几何概型的概率公式进行计算即可.【解答】解;由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为6的一条线段,∵∠BAD为钝角,这种情况的边界是∠BAD=90°的时候,此时BD=4∴这种情况下,必有4<BD<6.∴概率P==,故选:B.9.,i为虚数单位,若,则m的值为(
)A.1 B.-1 C.2 D.-2参考答案:A【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】由(m+i)(2﹣3i)=(2m+3)+(2﹣3m)i=5-i,得,即m=1.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.已知集合A={1,2},B={,},若A∩B={},则A∪B为(
)
A.{-1,,1}
B.{-1,}
C.{1,} D.{,1,}参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点M满足,则=
.参考答案:212.复数z满足=1﹣2i(i是虚数单位),则z的虚部是.参考答案:0【考点】复数代数形式的乘除运算.【分析】利用复数定义是法则、虚部的定义即可得出.【解答】解:复数z满足=1﹣2i(i是虚数单位),∴z=(1+2i)(1﹣2i)=12+22=5,则z的虚部为0.故答案为:0.13.已知,为第四象限角,则
.参考答案:略14.在三位数中,若十位上的数字比百位上的数字和个位上的数字都小,则称这个数为凹数,如304,968等都是凹数。各个数位上无重复数字的三位凹数共有____________个.参考答案:24015.已知{an}是等比数列,,则a1a2+a2a3+…+anan+1=
.参考答案:【考点】数列的求和;等比数列的通项公式.【专题】计算题.【分析】首先根据a2和a5求出公比q,根据数列{anan+1}每项的特点发现仍是等比数列,根据等比数列求和公式可得出答案.【解答】解:由,解得.数列{anan+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故答案为.【点评】本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.16.过原点且倾斜角为30°的直线被圆x2+y2﹣6y=0所截得的弦长为.参考答案:3【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】由题意可得直线方程为y=x,求出圆心到直线的距离d==,故弦长为2=3.【解答】解:原点且倾斜角为30°的直线的斜率等于,故直线方程为y=x,即x﹣3y=0.圆x2+y2﹣6y=0即x2+(y﹣3)2=27,表示以(0,3)为圆心,以3为半径的圆,故圆心到直线的距离d==,故弦长为2=3,故答案为:3.【点评】本题考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,求出圆心17.甲、乙两人下棋,两人下成和棋的概率为,乙获胜的概率为,甲获胜的概率是,甲不输的概率
.参考答案:【考点】互斥事件的概率加法公式.【专题】概率与统计.【分析】甲获胜和乙不输是对立互斥事件,甲不输与乙获胜对立互斥事件,根据概率公式计算即可.【解答】解:甲获胜和乙不输是对立互斥事件,∴甲获胜的概率是1﹣()=,甲不输与乙获胜对立互斥事件.∴甲不输的概率是1﹣=,故答案为:,.【点评】本题考查了对立互斥事件的概率公式,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)求满足下列条件的直线的方程:(1)经过点A(3,2),且与直线4x+y-2=0平行;(2)经过点B(2,-3),且平行于过点M(1,2)和N(-1,-5)的直线;(3)经过点C(3,0),且与直线2x+y-5=0垂直.参考答案:解:(1)由直线4x+y-2=0得直线的斜率为-4,
(2分)所以经过点A(3,2),且与直线4x+y-2=0平行的直线方程为y-2=-4(x-3),即4x+y-14=0.
(4分)(2)由已知,经过两点M(1,2)和N(-1,-5)的直线的斜率,
(6分)所以,经过点B(2,-3),且平行于MN的直线方程为,即7x-2y-20=0.
(8分)(3)由直线2x+y-5=0得直线的斜率为-2,
(9分)所以与直线2x+y-5=0垂直的直线的斜率为.
(10分)所以,经过点C(3,0),且与直线2x+y-5=0垂直的直线方程为,即x-2y-3=0.
(12分)
略19.(本小题满分12分)已知等差数列{an}中,a1=1,a3=-3.(I)求数列{an}的通项公式;(II)若数列{an}的前k项和=-35,求k的值.参考答案:解:(I)设等差数列的公差为d,则
由
解得d=-2。从而,(II)由(I)可知,所以进而由即,解得又为所求。
略20.在△ABC中,a、b、c分别是角A、B、C的对边,且=﹣.(1)求角B的大小;(2)若b=,a+c=4,求a的值.参考答案:【考点】余弦定理;正弦定理.【专题】综合题.【分析】(1)根据正弦定理化简已知的等式,再利用两角和的正弦函数公式及诱导公式化简后,由sinA不为0,即可得到cosB的值,根据B的范围,利用特殊角的三角函数值即可求出B的度数;(2)利用余弦定理得到b2=a2+c2﹣2accosB,配方后把b,a+c及cosB的值代入,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:(1)由正弦定理得===2R,得a=2RsinA,b=2RsinB,c=2RsinC,代入=﹣,即2sinAcosB+sinCcosB+cosCsinB=0,化简得:2sinAcosB+sin(B+C)=0,∵A+B+C=π,∴sin(B+C)=sinA,∴2sinAcosB+sinA=0,∵sinA≠0,∴cosB=﹣,又∵角B为三角形的内角,∴B=;(2)将b=,a+c=4,B=,代入余弦定理b2=a2+c2﹣2accosB,得13=a2+(4﹣a)2﹣2a(4﹣a)cos,∴a2﹣4a+3=0,∴a=1或a=3.【点评】此题考查了正弦定理,余弦定理以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.21.(本题满分13分)已知数列满足,(1)计算的值;(2)由(1)的结果猜想的通项公式,并证明你的结论。参考答案:解析:(1)由,当时……2分时……………………4分时………
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙人协议合同书
- 二零二四年度智能硬件设备研发与生产合同
- 二零二四年度商务代理合同代理产品与代理区域
- 换热器采购合作协议
- 广告发布合同案例
- 节能减排合作方案
- 英文房屋抵押贷款合同
- 仓储服务合同升级策略分析
- 招标代理投标文件完全攻略宝典
- 海鲜水产选购协议
- 第三单元小数除法(单元测试)-2024-2025学年五年级数学上册人教版
- 皮鞋(2023年四川成都中考语文试卷记叙文阅读题及答案)
- 2024年高等学校英语应用能力考试B级真题附答案
- 2024年公安机关人民警察基本级执法资格考试试题
- 员工培训记录表
- 统编版2024年新教材七年级上册道德与法治7.2《共建美好集体》教案
- 16 朱德的扁担 公开课一等奖创新教学设计(表格式)
- 五年级上册语文说课稿《25.古人谈读书》人教(部编版)
- (初级)管工职业鉴定考试题库(含答案)
- GA/T 2133.2-2024便携式微型计算机移动警务终端第2部分:安全监控组件技术规范
- 《陆上风力发电建设工程质量监督检查大纲》
评论
0/150
提交评论