




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InterpolationInterpolationInterpolationisimportantconceptinnumericalanalysis.Quiteoftenfunctionsmaynotbeavailableexplicitlybutonlythevaluesofthefunctionatasetofpoints.InterpolationInterpolationisimportantconceptinnumericalanalysis.Quiteoftenfunctionsmaynotbeavailableexplicitlybutonlythevaluesofthefunctionatasetofpoints.Thevaluesforf(xi)maybetheresultsfromaphysicalmeasurement(conductivityatdifferentpointsaroundUWI)InterpolationItmayalsobefromsomelongnumericalcalculationwhichcan’tbeputintoasimpleequation.InterpolationItmayalsobefromsomelongnumericalcalculationwhichcan’tbeputintoasimpleequation.Whatisrequiredisthatweestimatef(x)!i.e.Drawasmoothcurvethroughxi.InterpolationThemethodofestimatingbetweentwoknownpoints(values)iscalledinterpolation.Whileestimatingoutsideofknowvaluesiscalledextrapolation.InterpolationInterpolationiscarriedoutusingapproximatingfunctionssuchas:PolynomialsTrigonometricfunctionsExponentialfunctionsFouriermethodsInterpolationTheoryYesapproximatebutwhatisagoodapproximation?Clearlyagoodapproximationshouldbe,suchthattheerrorbetweenthetruefunctionandtheapproximationfunctionshouldbeverysmall.Otherthanthisapproximatingfunctionsshouldhavethefollowingproperties:ThefunctionshouldbeeasytodetermineItshouldbeeasytodifferentiateItshouldbeeasytoevaluateItshouldbeeasytointegrateTherearenumeroustheoremsonthesortsoffunctions,whichcanbewellapproximatedbywhichinterpolatingfunctions.Generallythesefunctionsareoflittleuse.Therearenumeroustheoremsonthesortsoffunctions,whichcanbewellapproximatedbywhichinterpolatingfunctions.Generallythesefunctionsareoflittleuse.Thefollowingtheoremisusefulpracticallyandtheoreticallyforpolynomialinterpolation.WeierstrassApproximationTheorem
WeierstrassApproximationTheoremIff(x)isacontinuousreal-valuedfunctionon[a,b]thenforany>0,thenthereexistsapolynomialPnon[a,b]suchthat|ƒ(x)–Pn(x)|<forallx[a,b].WeierstrassApproximationTheoremThistellsusthat,anycontinuousfunctiononaclosedandboundedintervalcanbeuniformlyapproximatedonthatintervalbypolynomialtoanydegreeofaccuracy.Howeverthereisnoguaranteethatwewillknowf(x)toanaccuracyforthetheoremtohold.WeierstrassApproximationTheoremConsequently,anycontinuousfunctioncanbeapproximatedtoanyaccuracybyapolynomialofhighenoughdegree.PolynomialApproximationPolynomialssatisfyauniquenesstheorem:Apolynomialofdegreenpassingexactlythroughn+1pointsisunique.Thepolynomialthroughaspecificsetofpointsmaytakedifferentforms,butallformsareequivalent.Anyformcanbemanipulatedintoanotherformbysimplealgebraicrearrangement.PolynomialApproximationTheTaylorseriesisapolynomialofinfiniteorder.Thus
ƒ(x)=ƒ(x0)+ƒ'(x0)(x-x0)+1/2!ƒ''(x0)(x-x0)2+..Howeveritisimpossiblecomputationallytoevaluateaninfinitenumberofterms.PolynomialApproximationTaylorpolynomialofdegreenisthereforeusuallydefinedas
ƒ(x)=Pn(x)+Rn
+1(x)wheretheTaylorpolynomialPn(x)andtheremaindertermRn
+1(x)aregivenby
Pn(x)=ƒ(x0)+ƒ'(x0)(x-x0)+…+1/n!ƒn(x0)(x-x0)n
Rn
+1(x)=1/(n+1)!ƒn+1(ξ)(x-x0)n+1wherex0≤ξ<x.PolynomialApproximationTheTaylorpolynomialisatruncatedTaylorseries,withanexplicitremainder,orerrorterm.TheTaylorpolynomialcannotbeusedasanapproximatingfunctionfordiscretedata,becausethederivativesrequiredinthecoefficientscannotbedetermined.Itdoeshavegreatsignificance,however,forpolynomialapproximationbecauseithasanexpliciterrorterm.PolynomialApproximationWhenapolynomialofdegreen,Pn(x),isfittedexactlytoasetofn+1discretedatapoints,(x0,f0),(x1,f1),…,(xn,fn),thepolynomialhasnoerroratthedatapointsthemselves.However,atthelocationsbetweenthedatapoints,thereisanerror,whichisdefinedby
E(x)=ƒ(x)-Pn(x)Thiserrortermhastheform
E(x)=1/(n+1)!(x-x0)(x–x1)…(x–xn)ƒn+1(ξ);x0≤ξ≤x.InterpolationInPracticeInterpolatingPolynomialsInterpolatingPolynomials
Supposewearegivensomevalues,theprincipleisthatwefitapolynomialcurvetothedata.Thereasonforthisisthatpolynomialsarewell-behavedfunctions,requiringsimplearithmeticcalculations.InterpolatingPolynomials
Approximatingpolynomial(interpolatingpolynomial)shouldpassthroughalltheknownpoints.Whereitdoesnotpassthroughthepointsitshouldbeclosetothefunction.InterpolatingPolynomials
Approximatingpolynomial(interpolatingpolynomial)shouldpassthroughalltheknownpoints.Whereitdoesnotpassthroughthepointsitshouldbeclosetothefunction.
Truefunction Approx1 Approx2InterpolatingPolynomials
Notethattheinterpolatingpolynomialmaymisspointsofdiscontinuity.ThereisonlyoneinterpolatingpolynomialP(xi)orlessthatmatchestheexactvalues;f(x0),f(x1),…,f(xn)atn+1distinctbasepoints.
Truefunction Approx1 Approx2InterpolatingPolynomials
UsingPolynomialstoapproximateafunctiongivendiscretepointsInterpolatingPolynomials
Wewillbelookingattwointerpolatingmethods:LagrangeInterpolationDividedDifferenceLagrangeInterpolationLagrangePolynomials
AstraightforwardapproachistheuseofLagrangepolynomials.TheLagrangePolynomialmaybeusedwherethedatasetisunevenlyspaced.LagrangePolynomials
Theformulausedtointerpolatebetweendatapairs(x0,f(x0)),(x1,f(x1)),…,(xn,f(xn))isgivenby,WherethepolynomialPj(x)isgivenby,LagrangePolynomials
Ingeneral,LagrangePolynomials
Considerthetableofinterpolatingpointswewishtofit.ixf(x)0x0f(x0)1x1f(x1)2x2f(x2)3x3f(x3)LagrangePolynomials
Theinterpolationpolynomialis,ixf(x)0x0f(x0)1x1f(x1)2x2f(x2)3x3f(x3)LagrangePolynomials
LagrangePolynomials
NotethattheLagrangianpolynomialpassesthrougheachofthepointsusedinitsconstruction.Advantages
TheLagrangeformulaispopularbecauseitiswellknownandiseasytocode.Also,thedataarenotrequiredtobespecifiedwithxinascendingordescendingorder.Disadvantages
AlthoughthecomputationofPn(x)issimple,themethodisstillnotparticularlyefficientforlargevaluesofn.Whennislargeandthedataforxisordered,someimprovementinefficiencycanbeobtainedbyconsideringonlythedatapairsinthevicinityofthexvalueforwhichPn(x)issought.ThepriceofthisimprovedefficiencyisthepossibilityofapoorerapproximationtoPn(x).
DiagramshowingInterpolation(incrementallyfromoneto5points)Newton’sDivideddifferencesNewton’sDivideddifferencesThenthdegreepolynomialmaybewritteninthespecialform:
Newton’sDivideddifferencesThenthdegreepolynomialmaybewritteninthespecialform:IfwetakeaisuchthatPn(x)=ƒ(x)atn+1knownpointssothatPn(xi)=ƒ(xi),i=0,1,…,n,thenPn(x)isaninterpolatingpolynomial.Newton’sDivideddifferencesAdivideddifferenceisdefinedasthedifferenceinthefunctionvaluesattwopoints,dividedbythedifferenceinthevaluesofthecorrespondingindependentvariable.Thus,thefirstdivideddifferenceatpointisdefinedas
Newton’sDivideddifferencesThus,thefirstdivideddifferenceatpointisdefinedas
Theseconddifferenceisgivenas:Ingeneral,Newton’sDivideddifferencesAdivideddifferencetable.Newton’sDivideddifferencesOnewithactualvalues.Newton’sDivideddifferencesThe3rddegreepolynomialfittingallpointsfromx0=3.2tox3=4.8isgivenbyP3(x)=22.0+8.400(x-3.2)+2.856(x-3.2)(x-2.7)–0.528(x-3.2)(x-2.7)(x-1.0)The4thdegreepolynomialfittingallpointsisgivenbyP4(x)=P3(x)+0.256(x-3.2)(x-2.7)(x-1.0)(x-4.8)Theinterpolatedvalueatx=3.0givesP3(x)=20.2120.Newton’sDivideddifferencesTherearetwodisadvantagestousingtheLagrangianinterpolationpolynomialforinterpolation.Itinvolvesmorearithmeticoperationsthandoesthedivideddifferences.2.Ifwedesiretoaddorsubtractapointfromthesettoconstructthepolynomial,weessentiallyhavetostartoverinthecomputat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳教练学院行业跨境出海战略研究报告
- 民俗博物馆AI应用行业深度调研及发展战略咨询报告
- 网络广告AI应用行业跨境出海战略研究报告
- 高效脱模剂环保配方企业制定与实施新质生产力战略研究报告
- 社交媒体情绪分析营销工具行业深度调研及发展战略咨询报告
- 工业废渣脱硫剂原料行业跨境出海战略研究报告
- 整形手术协议合同书
- 协议离婚时间多长
- 莫让婚前协议变“离婚协议”二零二五年
- 除尘器滤料再生技术行业跨境出海战略研究报告
- 银行保险客户KYC基础信息表
- CRPS电源设计向导 CRPS Design Guide r-2017
- 2022年家政服务员(高级)理论考试题库-下(多选、判断题部分)
- (完整版)东南大学工程项目管理陆惠民第四章工程项目管理组织(课后习题答案)
- SH/T 1627.1-1996工业用乙腈
- 肺结核患者管理结案评估表
- T-JSTJXH 15-2022 装配式劲性柱-钢梁框架结构设计规程
- 人教PEP版四年级下册英语Unit 3 B Let's learn说课稿
- 第1章 地理信息系统概述《地理信息系统教程》
- JJF 1109-2003 跳动检查仪校准规范-(高清现行)
- 水利水保监理过程中承包商、监理方用空表
评论
0/150
提交评论