版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InterpolationInterpolationInterpolationisimportantconceptinnumericalanalysis.Quiteoftenfunctionsmaynotbeavailableexplicitlybutonlythevaluesofthefunctionatasetofpoints.InterpolationInterpolationisimportantconceptinnumericalanalysis.Quiteoftenfunctionsmaynotbeavailableexplicitlybutonlythevaluesofthefunctionatasetofpoints.Thevaluesforf(xi)maybetheresultsfromaphysicalmeasurement(conductivityatdifferentpointsaroundUWI)InterpolationItmayalsobefromsomelongnumericalcalculationwhichcan’tbeputintoasimpleequation.InterpolationItmayalsobefromsomelongnumericalcalculationwhichcan’tbeputintoasimpleequation.Whatisrequiredisthatweestimatef(x)!i.e.Drawasmoothcurvethroughxi.InterpolationThemethodofestimatingbetweentwoknownpoints(values)iscalledinterpolation.Whileestimatingoutsideofknowvaluesiscalledextrapolation.InterpolationInterpolationiscarriedoutusingapproximatingfunctionssuchas:PolynomialsTrigonometricfunctionsExponentialfunctionsFouriermethodsInterpolationTheoryYesapproximatebutwhatisagoodapproximation?Clearlyagoodapproximationshouldbe,suchthattheerrorbetweenthetruefunctionandtheapproximationfunctionshouldbeverysmall.Otherthanthisapproximatingfunctionsshouldhavethefollowingproperties:ThefunctionshouldbeeasytodetermineItshouldbeeasytodifferentiateItshouldbeeasytoevaluateItshouldbeeasytointegrateTherearenumeroustheoremsonthesortsoffunctions,whichcanbewellapproximatedbywhichinterpolatingfunctions.Generallythesefunctionsareoflittleuse.Therearenumeroustheoremsonthesortsoffunctions,whichcanbewellapproximatedbywhichinterpolatingfunctions.Generallythesefunctionsareoflittleuse.Thefollowingtheoremisusefulpracticallyandtheoreticallyforpolynomialinterpolation.WeierstrassApproximationTheorem
WeierstrassApproximationTheoremIff(x)isacontinuousreal-valuedfunctionon[a,b]thenforany>0,thenthereexistsapolynomialPnon[a,b]suchthat|ƒ(x)–Pn(x)|<forallx[a,b].WeierstrassApproximationTheoremThistellsusthat,anycontinuousfunctiononaclosedandboundedintervalcanbeuniformlyapproximatedonthatintervalbypolynomialtoanydegreeofaccuracy.Howeverthereisnoguaranteethatwewillknowf(x)toanaccuracyforthetheoremtohold.WeierstrassApproximationTheoremConsequently,anycontinuousfunctioncanbeapproximatedtoanyaccuracybyapolynomialofhighenoughdegree.PolynomialApproximationPolynomialssatisfyauniquenesstheorem:Apolynomialofdegreenpassingexactlythroughn+1pointsisunique.Thepolynomialthroughaspecificsetofpointsmaytakedifferentforms,butallformsareequivalent.Anyformcanbemanipulatedintoanotherformbysimplealgebraicrearrangement.PolynomialApproximationTheTaylorseriesisapolynomialofinfiniteorder.Thus
ƒ(x)=ƒ(x0)+ƒ'(x0)(x-x0)+1/2!ƒ''(x0)(x-x0)2+..Howeveritisimpossiblecomputationallytoevaluateaninfinitenumberofterms.PolynomialApproximationTaylorpolynomialofdegreenisthereforeusuallydefinedas
ƒ(x)=Pn(x)+Rn
+1(x)wheretheTaylorpolynomialPn(x)andtheremaindertermRn
+1(x)aregivenby
Pn(x)=ƒ(x0)+ƒ'(x0)(x-x0)+…+1/n!ƒn(x0)(x-x0)n
Rn
+1(x)=1/(n+1)!ƒn+1(ξ)(x-x0)n+1wherex0≤ξ<x.PolynomialApproximationTheTaylorpolynomialisatruncatedTaylorseries,withanexplicitremainder,orerrorterm.TheTaylorpolynomialcannotbeusedasanapproximatingfunctionfordiscretedata,becausethederivativesrequiredinthecoefficientscannotbedetermined.Itdoeshavegreatsignificance,however,forpolynomialapproximationbecauseithasanexpliciterrorterm.PolynomialApproximationWhenapolynomialofdegreen,Pn(x),isfittedexactlytoasetofn+1discretedatapoints,(x0,f0),(x1,f1),…,(xn,fn),thepolynomialhasnoerroratthedatapointsthemselves.However,atthelocationsbetweenthedatapoints,thereisanerror,whichisdefinedby
E(x)=ƒ(x)-Pn(x)Thiserrortermhastheform
E(x)=1/(n+1)!(x-x0)(x–x1)…(x–xn)ƒn+1(ξ);x0≤ξ≤x.InterpolationInPracticeInterpolatingPolynomialsInterpolatingPolynomials
Supposewearegivensomevalues,theprincipleisthatwefitapolynomialcurvetothedata.Thereasonforthisisthatpolynomialsarewell-behavedfunctions,requiringsimplearithmeticcalculations.InterpolatingPolynomials
Approximatingpolynomial(interpolatingpolynomial)shouldpassthroughalltheknownpoints.Whereitdoesnotpassthroughthepointsitshouldbeclosetothefunction.InterpolatingPolynomials
Approximatingpolynomial(interpolatingpolynomial)shouldpassthroughalltheknownpoints.Whereitdoesnotpassthroughthepointsitshouldbeclosetothefunction.
Truefunction Approx1 Approx2InterpolatingPolynomials
Notethattheinterpolatingpolynomialmaymisspointsofdiscontinuity.ThereisonlyoneinterpolatingpolynomialP(xi)orlessthatmatchestheexactvalues;f(x0),f(x1),…,f(xn)atn+1distinctbasepoints.
Truefunction Approx1 Approx2InterpolatingPolynomials
UsingPolynomialstoapproximateafunctiongivendiscretepointsInterpolatingPolynomials
Wewillbelookingattwointerpolatingmethods:LagrangeInterpolationDividedDifferenceLagrangeInterpolationLagrangePolynomials
AstraightforwardapproachistheuseofLagrangepolynomials.TheLagrangePolynomialmaybeusedwherethedatasetisunevenlyspaced.LagrangePolynomials
Theformulausedtointerpolatebetweendatapairs(x0,f(x0)),(x1,f(x1)),…,(xn,f(xn))isgivenby,WherethepolynomialPj(x)isgivenby,LagrangePolynomials
Ingeneral,LagrangePolynomials
Considerthetableofinterpolatingpointswewishtofit.ixf(x)0x0f(x0)1x1f(x1)2x2f(x2)3x3f(x3)LagrangePolynomials
Theinterpolationpolynomialis,ixf(x)0x0f(x0)1x1f(x1)2x2f(x2)3x3f(x3)LagrangePolynomials
LagrangePolynomials
NotethattheLagrangianpolynomialpassesthrougheachofthepointsusedinitsconstruction.Advantages
TheLagrangeformulaispopularbecauseitiswellknownandiseasytocode.Also,thedataarenotrequiredtobespecifiedwithxinascendingordescendingorder.Disadvantages
AlthoughthecomputationofPn(x)issimple,themethodisstillnotparticularlyefficientforlargevaluesofn.Whennislargeandthedataforxisordered,someimprovementinefficiencycanbeobtainedbyconsideringonlythedatapairsinthevicinityofthexvalueforwhichPn(x)issought.ThepriceofthisimprovedefficiencyisthepossibilityofapoorerapproximationtoPn(x).
DiagramshowingInterpolation(incrementallyfromoneto5points)Newton’sDivideddifferencesNewton’sDivideddifferencesThenthdegreepolynomialmaybewritteninthespecialform:
Newton’sDivideddifferencesThenthdegreepolynomialmaybewritteninthespecialform:IfwetakeaisuchthatPn(x)=ƒ(x)atn+1knownpointssothatPn(xi)=ƒ(xi),i=0,1,…,n,thenPn(x)isaninterpolatingpolynomial.Newton’sDivideddifferencesAdivideddifferenceisdefinedasthedifferenceinthefunctionvaluesattwopoints,dividedbythedifferenceinthevaluesofthecorrespondingindependentvariable.Thus,thefirstdivideddifferenceatpointisdefinedas
Newton’sDivideddifferencesThus,thefirstdivideddifferenceatpointisdefinedas
Theseconddifferenceisgivenas:Ingeneral,Newton’sDivideddifferencesAdivideddifferencetable.Newton’sDivideddifferencesOnewithactualvalues.Newton’sDivideddifferencesThe3rddegreepolynomialfittingallpointsfromx0=3.2tox3=4.8isgivenbyP3(x)=22.0+8.400(x-3.2)+2.856(x-3.2)(x-2.7)–0.528(x-3.2)(x-2.7)(x-1.0)The4thdegreepolynomialfittingallpointsisgivenbyP4(x)=P3(x)+0.256(x-3.2)(x-2.7)(x-1.0)(x-4.8)Theinterpolatedvalueatx=3.0givesP3(x)=20.2120.Newton’sDivideddifferencesTherearetwodisadvantagestousingtheLagrangianinterpolationpolynomialforinterpolation.Itinvolvesmorearithmeticoperationsthandoesthedivideddifferences.2.Ifwedesiretoaddorsubtractapointfromthesettoconstructthepolynomial,weessentiallyhavetostartoverinthecomputat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年路灯照明工程节能改造设计与实施合同3篇
- 2025年度虚拟偶像表演与推广服务合同3篇
- 2025年度建筑工程挂靠内部协作项目管理合同3篇
- 2025年度研生物技术专利申请及研究合作合同3篇
- 2025版新能源电池采购合同模板2篇
- 2024年度环保材料代理合作经营合同3篇
- 2024年网络安全公司与企业之间的安全防护服务合同
- 2024学校公共区域清洁与环保设备维护服务合同3篇
- 2025年矿渣粉运输合同绿色评价体系范本3篇
- 课题申报书:大学高水平学科交叉团队演进机制及培育策略研究
- Unit10单元基础知识点和语法点归纳 人教版英语九年级
- 自控原理课件1(英文版)
- GB/T 14048.14-2006低压开关设备和控制设备第5-5部分:控制电路电器和开关元件具有机械锁闩功能的电气紧急制动装置
- T-JSTJXH 15-2022 装配式劲性柱-钢梁框架结构设计规程
- 2023年上海市市高考物理一模试卷含解析
- 市政工程人行道维修方案
- 初中英语期末考试方法与技巧课件
- 马克思恩格斯传略课件
- 油烟管道清洗服务承诺书
- 卷积神经网络讲义课件
- 安全注射培训考核试题及答案
评论
0/150
提交评论