已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会计学1高等代数北大第三多项式数域一、数域二、数域性质定理§1.1数域第1页/共12页一、数域设P是由一些复数组成的集合,其中包括数不为0)仍是P中的数,则称P为一个数域.0与1,如果P中任意两个数的和、差、积、商(除常见数域:复数域C;实数域R;有理数域Q;(注意:自然数集N及整数集Z都不是数域.)定义第2页/共12页说明:1)若数集P中任意两个数作某一运算的结果仍在P中,则说数集P对这个运算是封闭的.2)数域的等价定义:如果一个包含0,1在内的数集P对于加法,减法,乘法与除法(除数不为0)是封闭的,则称集P为一个数域.第3页/共12页是一个数域.例1.证明:数集证:又对设则有设于是也不为0.第4页/共12页或矛盾)(否则,若则于是有为数域.是数域.类似可证Gauss数域第5页/共12页例2.设P是至少含两个数的数集,证明:若P中任意两个数的差与商(除数≠0)仍属于P,则P为一一个数域.有证:由题设任取所以,P是一个数域.时,时,第6页/共12页二、数域的性质定理任意数域P都包括有理数域Q.即,有理数域为最小数域.证明:设P为任意一个数域.由定义可知,于是有第7页/共12页进而有而任意一个有理数可表成两个整数的商,第8页/共12页设P为非空数集,若则称P为一个数环.附:例如,整数集Z就作成一个数环.数环第9页/共12页练习判断数集是否为数域?为什么?第10页/共12页
作业S是数域吗?2.证明:集合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制定清晰目标的重要性计划
- 烟台大学《数据结构与算法》2022-2023学年第一学期期末试卷
- 2024应急管理部暗访检查粉尘涉爆企业
- 邢台学院《复变函数》2021-2022学年第一学期期末试卷
- 线管理者的回顾与展望计划
- 信阳师范大学《绘本设计》2023-2024学年第一学期期末试卷
- 篮球社团活动安排计划
- 幼儿园班级工作计划成果总结
- 西华师范大学《经典文学作品选读》2023-2024学年第一学期期末试卷
- 2024年01月11021劳动与社会保障法期末试题答案
- UG基础培训课件
- 2024年广东省广州市荔湾区中考一模语文试题
- 人教版四年级上册数学数学复习资料
- 《女娲造人》预习资料
- 上海市闵行区2024-2025学年八年级(上)期末物理试卷(解析版)
- 无人机喷药合作合同书模板
- TD/T 1066-2021 不动产登记数据库标准(正式版)
- 手术室不良事件警示教育
- 公需科2024广东公需课《新质生产力与高质量发展》试题(含答案)继续教育
- 走进现代林业智慧树知到期末考试答案章节答案2024年浙江农林大学
- TB10001-2016 铁路路基设计规范
评论
0/150
提交评论