第4章 几何变换_第1页
第4章 几何变换_第2页
第4章 几何变换_第3页
第4章 几何变换_第4页
第4章 几何变换_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章

图像的几何变换

数字图像的几何变换就是对图像进行如下处理:改变图像的几何位置、几何形状、几何尺寸等几何特征。

几何变换的特点是:改变图像像素的空间位置,而不改变像素灰度值。本章主要内容:4.1位置变换:图像的平移、镜像、旋转4.2形状变换:图像的缩放、错切4.1图像的位置变换图像的位置变换是指图像的尺寸和形状不发生变化,只是将图像进行平移,或者作镜像变换,或者进行旋转。图像的位置变换的一个应用实例:目标配准。4.1.1图像的平移目的:改变图像在画布上的位置。方法:将图像的所有像素都按要求进行垂直或者水平移动。

设图像的任一像素坐标为(i,j),图像在画布上沿行方向与列方向分别移动Δi与Δj。假设平移后的像素坐标为(i’,j’)。则平移计算公式为:

注意:i与j是原图像的像素坐标,i’与j’是平移后的图像像素坐标。4.1.1图像的平移平移后的图像内容没有变化。但“画布”一定要扩大,否则就会丢失信息。将图像进行平移,取Δi=1与Δj=2画布没有扩大画布扩大板书计算photoshop演示4.1.2图像的镜像(翻转)镜像分为水平镜像和垂直镜像

一、水平镜像(水平翻转)

以图像垂直中轴线为中心,交换图像的左右两部部分。假设图像的大小为M×N,水平镜像计算公式为:123123123123其中,(i,j)为原图像某个像素的坐标,(i’,j’)为该像素在新图像中的坐标。123123二、垂直镜像(垂直翻转)

以图像水平中轴线为中心,交换图像的上下两部分。设图像的大小为M×N,垂直镜像的计算公式为:123123其中,(i,j)为原图像某个像素的坐标,(i’,j’)为该像素在新图像中的坐标。4.1.2图像的镜像photoshop演示4.1.3图像的旋转这个计算公式计算出的值为小数,而坐标值为正整数。计算结果中的新坐标值可能超过原图像所在的空间范围。图像的旋转:以图像中的某一点为原点,按照顺时针或逆时针旋转一定的角度。图像逆时针旋转的计算公式如下:图像旋转时,为了避免信息的丢失,应当扩大画布,并将旋转后的图像平移到新画布上。图像的旋转例题结论:按照图像旋转计算公式获得的结果与想象中的差异很大。板书:计算像素(1,1)的旋转新坐标图像旋转之后,出现了两个问题:1)因为相邻像素之间只能有8个方向,而旋转方向却是任意的,使得像素的排列不是完全按照原有的相邻关系。2)会出现许多的空洞点。我们来看一个旋转图像的画面效果。空洞点

新图像中的空洞可以采用插值方法填充插值方法有两种方式:一、近邻插值法二、均值插值法一、近邻插值法对于判断为空洞点的像素,用其同一行(或列)中的相邻像素值来填充。二、均值插值法对于空洞的像素,用其相邻四个像素的平均颜色来填充。(0,128,0)(255,0,0)(102,204,254)(0,102,254)(89,109,127)计算平均颜色

经过插值处理之后,图像效果就变得自然。Photoshop演示镜像与旋转4.2图像的形状变换所谓图像的形状变换是指图像的形状发生了变化,主要包括放大、缩小、错切等。4.2.1图像的缩小图像缩小有按比例缩小和不按比例缩小两种情况。图像缩小之后,像素的个数减少,承载的信息量小了,画布可相应缩小。图像缩小方法有两种:(1)基于等间隔采样的缩小方法;(2)基于局部均值的缩小方法。(a)按比例缩小(b)不按比例缩小一、基于等间隔采样的图像缩小方法原理:该方法通过对原图像的均匀采样,等间隔地选取一部分像素,从而获得小尺寸图像的数据,并且尽量保持原有图像特征不丢失。6×63×3算法描述:设原图像大小为M×N,缩小为k1M×k2N,(k1<1,k2<1)。算法步骤如下:1)设旧图像是f(i,j),i=1,2,…,M,j=1,2,…,N.新图像是g(i,j),i=1,2,…,k1M,j=1,2,…,k2N.2)计算采样间隔Δi=1/k1,Δj=1/k23)g(i,j)=f(Δi×i,Δj×j)例题:缩小6×6的图像,设k1=2/3,k2=3/4;f21f23f24f25f26f31f33f34f35f36f51f53f54f55f56f61f63f64f65f66根据:g(i,j)=f(Δi×i,Δj×j)对于:i=1,j=1→g(1,1)=f(1×3/2,1×4/3)=f21对于:i=2,j=1→g(2,1)=f(2×3/2,1×4/3)=f31……………f11f12f13f14f15f16f21f22f23f24f25f26f31f32f33f34f35f36f41f42f43f44f45f46f51f52f53f54f55f56f61f62f63f64f65f66注意:不按比例缩小会导致几何畸变。采样间隔:Δi=3/2,Δj=4/3原图像f(i,j)=fij新图像g(i,j)f11f12f13f14f15f16f21f22f23f24f25f26f31f32f33f34f35f36f41f42f43f44f45f46f51f52f53f54f55f56f61f62f63f64f65f66新图像大小:k1M×k2N=4×5板书计算二、基于局部均值的的图像缩小方法

由于基于等间隔采样的方法无法反映未被采样的像素信息。为此可采用基于局部均值的图像缩小方法,其实现步骤如下:(1)计算新图像的大小,计算采样间隔Δi=1/k1,Δj=1/k2(2)对新图像的像素g(i,j),计算其在原图像中对应的子块f(i,j):

(3)根据下式求出缩小的图像:例题:k1=0.7,k2=0.6→Δi=1.4,Δj=1.7板书演算:f(1,1),f(3,4)

4.2.2图像放大图像放大有两种:按比例放大或不按比例放大。图像放大从字面上看,是图像缩小的逆操作。但是,从信息处理的角度来看,图像缩小是对信息的一种简化,而图像放大则需要为增加的像素填入适当的灰度值,是对未知信息的估计。两种图像放大方法:(1)基于像素放大原理的图像放大方法(2)基于双线性插值的图像放大方法

4.2.2.1基于像素放大原理的图像放大方法基本思想是:如果需要将原图像放大k倍,则将原图像中的每个像素值,填在新图像中对应的k×k大小的子块中。放大5倍当图像放大k1×k2倍,就好像每个像素放大了k1×k2倍。算法描述:设原图像大小为M×N,放大为k1M×k2N,(k1>1,k2>1)。算法步骤如下:1)设原图像是F(i,j):i=1,2,…,M;j=1,2,…,N.新图像是G(i,j):i=1,2,…,k1M;j=1,2,…,k2N.2)计算采样间隔:Δi=1/k1

Δj=1/k23)G(i,j)=f(Δi×i,Δj×j)以上方法与等间隔采样的图像缩小方法步骤相同例题k1=1.2;k2=2.5→Δi=0.83;Δj=0.4G(i,j)=f(Δi×i;,Δj×j;)教材g16有误G(2,4)的板书计算G为4×8的新图像

4.2.2.2基于双线性插值的图像放大方法基于双线性插值的图像放大方法能够有效消除图像高倍放大时出现的“马赛克现象”,使得图像的放大效果更加自然。请看potoshop软件的演示效果比较。(先缩10倍)算法步骤如下:(1)按照基于像素放大原理的图像放大方法,确定每一个原图像的像素在新图像中对应的子块。(2)对新图像中每一个子块,仅对其一个像素进行填充。在每个子块中选取一个填充像素的方法如下:对右下角的子块,选取子块中右下角的像素;对末列、非末行子块,选取子块中的右上角像素;对末行、非末列子块,选取子块中的左下角像素;对剩余的子块,选取子块中的左上角像素。(3)通过双线性插值方法计算剩余像素的值。对所有填充像素所在列中的其他像素的值,可以根据该像素的上方与下方的已填充的像素值,采用双线性插值方法计算得到。第i2行g(i1,j)g(i2,j)g(i,j)第i1行第i行第j列板书计算g(3,1)对剩余像素的值,可以利用该像素的左方与右方的已填充像素的值,通过线性插值方法计算得到。

g(i,j1)g(i,j2)g(i,j)第j1

列第j列第j2列第i行板书计算g(1,2)g(2,7)的推测Photoshop演示算法效果4.2.3图像错切图像的错切变换可看成是平面景物在投影平面上的非垂直投影效果。错切变换可分为两种。一种是水平错切,水平方向的线段发生倾斜。另一种是垂直错切,垂直方向的线段发生倾斜。错切的计算公式如下:图像错切的例题图像错切后的像素行、列坐标中只有一种发生了变化。图像旋转,则是行坐标与列坐标同时发生变化。Photoshop的实验综合运用几何变换技术计算f(1,1)的新坐标4.3图像的仿射变换图像仿射变换提出的意义是采用通用的数学变换公式,来表示前面给出的几何变换。为了能够采用统一变换公式表示平移变换,引入齐次坐标概念。平移公式:4.3.1齐次坐标原坐标为(x,y),定义齐次坐标为:(wx,wy,w)

这里,令系数w取值为1,即像素(i,j)的齐次坐标为(i,j,1)。4.3.2仿射变换可以定义仿射变换如下:有了齐次坐标,就可以用矩阵形式表示为:图像的平移:图像的旋转:4.3.3仿射变换表示图像的几何变换4.3.3仿射变换表示图像的几何变换图像的水平镜像:图像的垂直镜像:4.3.3仿射变换表示图像的几何变换图像的水平错切:图像的垂直错切:投影变换是指在某个视点下,三维物体在平面上的投影。术语:视点;投影面;投影线如下图所示,当视点位于z轴(0,0,h),物体上的点p(x,y,z)在平面上的投影P(X,Y,0)的计算公式如下:xyzVp=(0,0,h)

视点p(x,y,z)

空间上的点P(X,Y,0)

投影面上的点4.4投影变换例题z=0时,X=hx/h=x,Y=hy/h=yz=1时,X=hx/(h-1)=1.5xY=hy/(h-1)=1.5y所以:P1=(1,1)P2=(2,1)P3=(1,2)P4=(2,2)P5=(1.5,1.5)P6=(3,1.5)P7=(1.5,3)P8=(3,3)已知立方体的8个顶点:p1=(1,1,0)p2=(2,1,0)p3=(1,2,0)p4=(2,2,0)P5=(1,1,1)p6=(2,1,1)p7=(1,2,1)p8=(2,2,1)假设视点位于(0,0,3),即h=3,求立方体各顶点在XOY平面上的投影。p1p3p4p2p5p6p7p8xzy投影变换的结果:根据视点到投影面之间的距离是否为无穷远,将投影方式分为透视投影和平行投影两种。4.4.1透视投影

视点到投影面之间的距离有限。透视投影的特点是:模拟了照相机的拍摄效果,如平行线的投影可能不再保持平行;近处物体的投影相对要大些。立方体的透视投影效果透视投影效果原理示意图视点位于无穷远,因此只须指明投影方向与投影平面。平行投影的特点是:平行线的投影仍然保持平行,投影结果与物体到投影面的距离无关。4.4.2平行投影立方体的平行投影效果平行投影原理示意图4.5图像几何畸变的校正当镜头没有正对拍摄目标物时,即目标物不是垂直于成像面上时,就会发生几何畸变。

常见的有枕形或桶形的图像畸变,例如二维条码图像的畸变:

常见的有枕

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论