变化的电磁场理论_第1页
变化的电磁场理论_第2页
变化的电磁场理论_第3页
变化的电磁场理论_第4页
变化的电磁场理论_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

UniversityPhysicsXi’anJiaotongUniversityAipingFang

apfang@6/5/2014

在无限长直载流导线的磁场中,有一运动的导体线框,导体线框与载流导线共面,解:通过面积元的磁通量(方向顺时针方向)例2:求:线框中的感应电动势10-2感应电动势两种不同机制

相对于实验室参照系,若磁场不变,而导体回路运动(切割磁场线)—

动生电动势相对于实验室参照系,若导体回路静止,磁场随时间变化—感生电动势一、动生电动势单位时间内导线切割的磁场线数电子受洛伦兹力——非静电力•••非静电场

动生电动势应用:匀强磁场,导体匀速运动磁场中的运动导线成为电源,非静电力是洛伦兹力••讨论:(3)注意矢量之间的关系(4)对于运动导线回路,电动势存在于整个回路(法拉第电磁感应定律)(1)动生电动势只产生在运动的一段导体上,不动的部分无电动势,只提供电流的回路(2)如果只有一段在磁场中运动,即无闭合回路,则上只有动生电动势,而无感应电流(5)感应电动势的功率设电路中感应电流为I导线受安培力导线匀速运动电路中感应电动势提供的电能是由外力做功所消耗的机械能转换而来的(6)感应电动势做功,洛伦兹力不做功?洛伦兹力做功为零例1:在匀强磁场B

中,长

R

的铜棒绕其一端O

在垂直于

B

的平面内转动,角速度为

OR求:棒上的电动势解:方法一(动生电动势):dl方向方法二(法拉第电磁感应定律):在dt

时间内导体棒切割磁场线方向由楞次定律确定例2:在半径为R

的圆形截面区域内有匀强磁场

B

,一直导线垂直于磁场方向以速度v扫过磁场区。求:当导线距区域中心轴垂直距离为

r

时的动生电动势解:方法一:动生电动势方法二:法拉第电磁感应定律在

dt

时间内导体棒切割磁场线方向由楞次定律确定例3:一圆形均匀刚性线圈,总电阻为R,半径为

r

,在均匀磁场

B

中以

绕其轴

OO’

转动,转轴垂直于

B

。当线圈平面转至与

B

平行时,试求:解:由FaradayLaw,线圈总电动势二、感生电动势实验证明:当磁场变化时,静止导体中也出现感应电动势仍是洛伦兹力充当非静电力?电场力充当非静电力麦克斯韦提出:无论有无导体或导体回路,变化的磁场都将在其周围空间产生具有闭合电场线的电场,并称此为感生电场或有旋电场感生电动势闭合回路中

是感生电场•感生电场与变化磁场之间的关系•讨论:感生电场与静电场的比较场源环流静电荷变化的磁场通量静电场为保守场感生电场为非保守场静电场为有源场感生电场为无源场(闭合电场线)(1)动生电动势的本质:来源于洛伦兹力感生电动势的本质:来源于感生电场(磁生电)(2)不论是动生还是感生电动势,都是感应电动势,法拉第电磁感应定律总结了这一共性(3)感生电场是无源有旋场场线有头有尾闭合曲线涡旋状(4)感生电场与磁场的变化率成左螺旋关系空间存在变化磁场在空间存在感生电场(5)当问题中既有动生、又有感生电动势,则总感应电动势为(导体不闭合)(导体闭合)(6)轴对称分布的变化磁场产生的感应电场例1:设一个半径为R的长直载流螺线管,内部磁场强度为,若为大于零的恒量。求:管内外的感应电场。解:例2:一被限制在半径为

R

的无限长圆柱内的均匀磁场

B

,B

均匀增加,B

的方向如图所示。求:导体棒MN、CD的感生电动势解:方法一(用感生电场计算):方法二(用法拉第电磁感应定律):(补逆时针回路OCDO)由于变化磁场激起感生电场,则在导体内产生感应电流。交变电流高频感应加热原理这些感应电流的流线呈闭合的涡旋状,故称涡电流(涡流)交变电流减小电流截面,减少涡流损耗整块铁心彼此绝缘的薄片电磁阻尼三、涡流•••10-3自感互感一、自感现象自感系数自感电动势线圈电流变化穿过自身磁通变化在线圈中产生感应电动势—自感电动势遵从法拉第定律1.自感现象即根据毕—萨定律穿过线圈自身总的磁通量与电流

I

成正比若自感系数是一不变的常量自感系数自感电动势讨论:3.自感电动势如果回路周围不存在铁磁质,自感L是一个与电流I无关,仅由回路的匝数、几何形状和大小以及周围介质的磁导率决定的物理量2.自感系数(1)负号:楞次定律(2)自感具有使回路电流保持不变的性质——电磁惯性(3)自感的单位:亨利(H)例1:同轴电缆由半径分别为

R1

和R2的两个无限长同轴圆筒状导体组成。求:无限长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论