《平行四边形的性质》设计 市赛一等奖_第1页
《平行四边形的性质》设计 市赛一等奖_第2页
《平行四边形的性质》设计 市赛一等奖_第3页
《平行四边形的性质》设计 市赛一等奖_第4页
《平行四边形的性质》设计 市赛一等奖_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《平行四边形的性质》教学设计总体说明(1)本节的主要内容包含平行四边形的性质。教学中可以通过让学生举实际生活中的例子,以加深学生对平行四边形的认识。(2)教学中应引导学生通过操作与探索,发现平行四边形是中心对称图形,在此基础上认识平行四边形的性质。(3)探索平行四边形的性质,熟练的运用平行四边形的性质解决问题。第一课时重点:平行四边形的概念和性质难点:探索平行四边形的性质解决过程环节1:学生举生活中平行四边形的实例;回忆概念“两组对边分别平行的四边形,叫平行四边形”并据此性质从图16.1.1环节2:【探究】学生操作探索:如图16.1.2,在方格纸上画一个平行四边形。如图16.1.2,用剪刀把ABCD从方格纸上剪下,再在一张纸上沿ABCD的边沿,画出一个四边形,记为EFGH。在ABCD中连接AC、BD,它们的交点记为O。用一枚图钉在O点穿过,将ABCD绕点O旋转180度。观察旋转后的180度和纸上所画的EFGH是否重合。根据观察结果,运用上一章所学的知识,你能探索出ABCD中存在哪些相等的边与相等的角? 让学生用数学语言描述观察和探索的结果,再试用文字总结,得“平行四边形的对边相等,对角相等”。【注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)】【(相邻的角指四边形中有一条公共边的两个角.注意和七年级学的邻角相区别.教学时结合图形使学生分辨清楚.)】环节3:理解和巩固:例1如图16.1.4,在ABCD中,已知∠A=40度,求其他各个内角的度数。例2如图16.1.5,在ABCD中,已知AB=8,周长为24,求其余三条边的长环节4、(随堂练习)1.填空:(1)在ABCD中,∠A=,则∠B=度,∠C=度,∠D=度.(2)ABCD中,∠A—∠B=240°,则∠A=,∠B=,∠C=,∠D=.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB=cm,BC=cm,CD=cm,CD=cm.(4)在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有.第2课时重点、难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算二解决过程环节11.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边分别平行且相等.环节2【探究】:在像上节课有图16.1.3那样的旋转过程中,让学生探究OA与OC、OB与OD的关系(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分注意:教学时要讲明线段互相平分的意义和表示方法.如图,设平行四边形ABCD的对角线AC、BD相交于点O,若AC与BD互相平分,则有OA=OC,OB=OD.环节3:理解和巩固:例3如图16.1.6,在ABCD中,已知对角线AC和BD相交与点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?环节4、(随堂练习)1、如图,ABCD中,对角线AC与BD交于点O,已知AC=8,OB=6,则OA=,OC=OD=BD=2、在ABCD中,对角线AC与BD相交于点O,已知AC+BD=24,且AC=3BD,则OA=OB=3、在平行四边形ABCD中,周长等于48,已知一边长12,求各边的长已知AB=2BC,求各边的长已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长第3课时:平行线间距离处处相等的性质一、重点:平行线间距离处处相等的性质难点:平行四边形性质与平行线间距离处处相等性质的应用二、解决过程环节1:学生回顾:平行四边形的性质环节2:平行四边形性质的应用:例1已知平行四边形的一个内角比它的邻角大42度,求四个内角的度数。例2如图,在ABCD中,AE垂直于CD,E是垂足。如果∠B=42°,那么∠D与∠DAE分别等于多少度?例3如右上图,在平行四边形ABCD中,已知AC、BD相交于点O,两条对角线的和为36厘米,CD的长为5厘米,求三角形OCD的周长。环节3:学生实践操作:在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间的垂线段的长度。学生探索:你发现什么结论?在其中一条直线上再取一点,验证一下。教师给出概念“两条平行线之间的距离”学生试总结平行线的性质:平行线之间的距离处处相等。环节4:学生巩固:n例4如图,如果直线m∥n,那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线m、n之间画出其他与△ABC面积相等的三角形吗?n第4课时:平行四边形的综合练习一、重点:平行四边形的性质的综合应用难点:发展学生进一步的推理能力和解决问题的能力二、解决过程环节1:学生回顾:平行四边形性质。题组一:(复习)在ABCD中,若∠A+∠C=130,则∠A=,∠B=。在ABCD中,若周长为40厘米,两邻边AB与AD之比为:3:2,则CD=AD=。3、ABCD中,∠A:∠B:∠C:∠D的值可能是()。A1:2:3:4B1:2:2:1C1:2:1:2D2:2:1:1环节2:例1、已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)解略.环节3:题组二(巩固)在ABCD中,AB=10,AB与CD之间的距离为6,则SABCD=平行四边形一边长为10,那么它的对角线长度可以为()。和12和30和8和63、平行四边形被一条对角线分得的两个三角形()。A、关于该对角线成轴对称B、关于该对角线的中心成中心对称C、既关于该对角线成轴对称,又关于该对角线的中点成中心对称D、既不关于该对角线成轴对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论