版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省汕头市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.
3.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
4.设函数f(x)=(x-1)(x-2)(x-3),则方程f(x)=0有()。A.一个实根B.两个实根C.三个实根D.无实根
5.设y1,y2为二阶线性常系数微分方程y"+p1y+p2y=0的两个特解,则C1y1+C2y2()A.为所给方程的解,但不是通解B.为所给方程的解,但不一定是通解C.为所给方程的通解D.不为所给方程的解
6.函数y=sinx在区间[0,n]上满足罗尔定理的ξ=A.A.0B.π/4C.π/2D.π
7.
8.设f(x)=sin2x,则f(0)=()
A.-2B.-1C.0D.2
9.A.3B.2C.1D.1/2
10.设D={(x,y){|x2+y2≤a2,a>0,y≥0),在极坐标下二重积分(x2+y2)dxdy可以表示为()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3dr
C.D.
11.A.A.
B.
C.
D.
12.A.等价无穷小
B.f(x)是比g(x)高阶无穷小
C.f(x)是比g(x)低阶无穷小
D.f(x)与g(x)是同阶但非等价无穷小
13.设函数f(x)与g(x)均在(α,b)可导,且满足f'(x)<g'(x),则f(x)与g(x)的关系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能确定大小
14.A.A.-(1/2)B.1/2C.-1D.2
15.曲线y=lnx-2在点(e,-1)的切线方程为()A.A.
B.
C.
D.
16.
17.
18.
19.A.A.4B.-4C.2D.-220.设函数为().A.A.0B.1C.2D.不存在二、填空题(20题)21.22.23.
24.
25.
26.
27.
28.
29.
30.
31.y=x3-27x+2在[1,2]上的最大值为______.32.
33.
34.
35.
36.y''-2y'-3y=0的通解是______.37.设曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则该切线方程为______.
38.曲线y=(x+1)/(2x+1)的水平渐近线方程为_________.
39.
40.
三、计算题(20题)41.求微分方程y"-4y'+4y=e-2x的通解.
42.43.
44.
45.
46.
47.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.48.49.证明:50.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.51.求微分方程的通解.52.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.53.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
54.求曲线在点(1,3)处的切线方程.55.将f(x)=e-2X展开为x的幂级数.56.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
57.
58.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
59.当x一0时f(x)与sin2x是等价无穷小量,则60.求函数f(x)=x3-3x+1的单调区间和极值.四、解答题(10题)61.
62.
63.64.65.
66.
67.
68.
69.
70.
五、高等数学(0题)71.已知∫f(ex)dx=e2x,则f(x)=________。
六、解答题(0题)72.
参考答案
1.C解析:
2.B解析:
3.A设所求平面方程为.由于点(1,0,0),(0,1,0),(0,0,1)都在平面上,将它们的坐标分别代入所设平面方程,可得方程组
故选A.
4.B
5.B如果y1,y2这两个特解是线性无关的,即≠C,则C1y1+C2y2是其方程的通解。现在题设中没有指出是否线性无关,所以可能是通解,也可能不是通解,故选B。
6.Cy=sinx在[0,π]上连续,在(0,π)内可导,sin0=sinπ=0,可
知y=sinx在[0,π]上满足罗尔定理,由于(sinx)'=cosx,可知ξ=π/2时,cosξ=0,因此选C。
7.A
8.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故选D。
9.B,可知应选B。
10.B因为D:x2+y2≤a2,a>0,y≥0,令则有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故选B。
11.Dy=cos3x,则y'=-sin3x*(3x)'=-3sin3x。因此选D。
12.D
13.D解析:由f'(x)<g'(x)知,在(α,b)内,g(x)的变化率大于f(x)的变化率,由于没有g(α)与f(α)的已知条件,无法判明f(x)与g(x)的关系。
14.A
15.D
16.B
17.A
18.D解析:
19.D
20.D本题考查的知识点为极限与左极限、右极限的关系.
由于f(x)为分段函数,点x=1为f(x)的分段点,且在x=1的两侧,f(x)的表达式不相同,因此应考虑左极限与右极限.
21.
22.2.
本题考查的知识点为极限的运算.
能利用洛必达法则求解.
如果计算极限,应该先判定其类型,再选择计算方法.当所求极限为分式时:
若分子与分母的极限都存在,且分母的极限不为零,则可以利用极限的商的运算法则求极限.
若分子与分母的极限都存在,但是分子的极限不为零,而分母的极限为零,则所求极限为无穷大量.
检查是否满足洛必达法则的其他条件,是否可以进行等价无穷小量代换,所求极限的分子或分母是否有非零因子,可以单独进行极限运算等.23.x-arctanx+C;本题考查的知识点为不定积分的运算.
24.1/(1-x)2
25.2yex+x
26.坐标原点坐标原点
27.
28.1/21/2解析:
29.x(asinx+bcosx)
30.
本题考查的知识点为二重积分的计算.31.-24本题考查的知识点为连续函数在闭区间上的最大值.
若f(x)在(a,b)内可导,在[a,b]上连续,常可以利用导数判定f(x)在[a,b]上的最值:
(1)求出f'(x).
(2)求出f(x)在(a,b)内的驻点x1,…,xk.
(3)比较f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值为f(x)在[a,b]上的最大(小)值,相应的点x为f(x)的最大(小)值点.
y=x3-27x+2,
则y'=3x2-27=3(x-3)(x+3),
令y'=0得y的驻点x1=-3,x2=3,可知这两个驻点都不在(1,2)内.
由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值为-24.
本题考生中出现的错误多为求出驻点x1=-3,x2=3之后,直接比较
f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,
得出y=x3-27x+2在[1,2]上的最大值为f(-3)=56.其错误的原因是没有判定驻点x1=-3,x2=3是否在给定的区间(1,2)内,这是值得考生注意的问题.在模拟试题中两次出现这类问题,目的就是希望能引起考生的重视.
本题还可以采用下列解法:注意到y'=3(x-3)(x+3),在区间[1,2]上有y'<0,因此y为单调减少函数。可知
x=2为y的最小值点,最小值为y|x=2=-44.
x=1为y的最大值点,最大值为y|x=1=-24.
32.
33.
34.
35.436.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程为r2-2r-3=0,得特征根为r1=3,r2=-1,所以方程的通解为y=C1e-x+C2e3x.37.y=f(1)本题考查的知识点有两个:一是导数的几何意义,二是求切线方程.
设切点为(x0,f(x0)),则曲线y=f(x)过该点的切线方程为
y-f(x0)=f'(x0)(x-x0).
由题意可知x0=1,且在(1,f(1))处曲线y=f(x)的切线平行于x轴,因此应有f'(x0)=0,故所求切线方程为
y=f(1)=0.
本题中考生最常见的错误为:将曲线y=f(x)在点(x0,f(x0))处的切线方程写为
y-f(x0)=f'(x)(x-x0)
而导致错误.本例中错误地写为
y-f(1)=f'(x)(x-1).
本例中由于f(x)为抽象函数,一些考生不习惯于写f(1),有些人误写切线方程为
y-1=0.
38.y=1/2本题考查了水平渐近线方程的知识点。
39.
40.1/2
41.解:原方程对应的齐次方程为y"-4y'+4y=0,
42.
43.
则
44.由一阶线性微分方程通解公式有
45.
46.
47.
48.
49.
50.
列表:
说明
51.52.由二重积分物理意义知
53.
54.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
55.
56.
57.
58.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%59.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安防监控安装项目协议范本版
- 2024年度二零二四年度子女轮流抚养与子女兴趣培养协议3篇
- 2024年定制版软件系统保障协议样本版
- 2024版特许经营合同标的及市场开发服务3篇
- 2024年加盟商销售佣金协议范本
- 2024年农业专业合作社农业废弃物资源化利用合同3篇
- 2024农家乐房屋租赁与农业科技示范项目合同3篇
- 2024年度公司印章授权协议
- 2024年国际物流服务协议样本
- 2024互联网金融产品交易合同法律问题及风险评估
- 高血压脑病的诊治
- 期末模拟考试卷02-2024-2025学年上学期高一思想政治课《中国特色社会主义》含答案
- 2024年甘肃省公务员考试《行测》真题及答案解析
- 2024年高考真题-化学(福建卷) 含解析
- 医学免疫学(本)学习通超星期末考试答案章节答案2024年
- 2024亚马逊卖家状况报告
- 生态系统的信息传递课件
- 2024年秋季学期新人教版生物7年级上册课件 第3章 微生物 2.3.1 微生物的分布
- 中国长江三峡集团有限公司二级机构负责人招聘真题
- 2024-2025学年新教材高中政治 第二单元 认识社会与价值选择 6.1 价值与价值观说课稿 统编版必修4
- 2024年计算机操作员考试-计算机操作员高级考试近5年真题附答案
评论
0/150
提交评论