




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
静态cmos8输入与非门的性能优化实验目的:1、 通过对8输入与非门的性能优化掌握大扇入组合逻辑电路的设计优化方法;2、 掌握HSPICE等EDA软件的基本操作;实验原理:1、 大扇入时的设计技术:调整晶体管尺寸;逐级加大晶体管尺寸;重新安排输入;重组逻辑结构;2、 8输入与非门的电路图:图1图1八输入与非门电路图MN1实验内容:实验采用的软件为HSPICEC-2009.09,工艺库文件为MM180_LVT18_V113.LIB(0.18um)。首先我们以Wp/Wn=2/1的参考反相器为基准确定八输入与非门的Wp/Wn=2/8。这里我们取Wp/L=2,L=0.18um,Wn/L=8。由书上的结论可以得到:“互补CMOS门的传播延时与输入模式是相关的。”如果考虑8输入与非门的输出由低至高的翻转,则有28-1种情形。显然要对它们都进行模拟是十分繁琐的。因此我们仅仅考虑引起最坏情况的输入组合(A=B=C=D=E=F=G=1,H=1—0,至于选该情形的理由将在3中进行解释,以下所讨论的tLH如果不特别说明均指的是在该情形下)。而对于输出由高到低翻转的情形输入模式类似的也有28-1种情形,但是如果考虑内部节点(图1中的节点广7)电容的初始状态时,估计延时就变得相当复杂。这时最坏情形发生在内部节点都被充电至VDD-VTH时,然后通过下拉网络对负载电容及各节点电容进行放电。下面我们对书上提到的四种设计技术进行逐一的验证:1、调整晶体管尺寸:根据书上结论:”如果负载电容主要是门自身的本征电容,则加宽器件只会增加'自载'效应,对传播延时将不产生影响。只有当负载以扇出为主是放大尺寸才会起作用。”①负载电容主要是门自身的本征电容:我们考虑极端情形,即负载电容就是门自身的本征电容时:这里我们取L=0.18um,Wp/L=2、3、4三种情况,对应的Wn/L=8、12、16。编写的HSPICE网表代码如下:nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.printv(out)v(a).paramwn='4*wp'
mp1outavddvddP_LV_18_MMw=wpl=0.18ummp2outavddvddP_LV_18_MMw=wpl=0.18ummp3outavddvddP_LV_18_MMw=wpl=0.18ummp4outavddvddP_LV_18_MMw=wpl=0.18ummp5outavddvddP_LV_18_MMw=wpl=0.18ummp6outavddvddP_LV_18_MMw=wpl=0.18ummp7outavddvddP_LV_18_MMw=wpl=0.18ummp8outhvddvddP_LV_18_MMw=wpl=0.18ummn1outa1gndN_LV_18_MMw=wnl=0.18ummn21a2gndN_LV_18_MMw=wnl=0.18ummn32a3gndN_LV_18_MMw=wnl=0.18ummn43a4gndN_LV_18_MMw=wnl=0.18ummn54a5gndN_LV_18_MMw=wnl=0.18ummn65a6gndN_LV_18_MMw=wnl=0.18ummn76a7gndN_LV_18_MMw=wnl=0.18ummn87hgndgndN_LV_18_MMw=wnl=0.18umvddvddgnddc1.8vaagnddc1.8vhhgndpulse0v1.8v500ps100ps100ps2ns4ns.datawp_tablewp0.36um0.54um0.72um.enddata.tran1ps4.5nssweepdata=wp_table.end■ MraHsaiffl号吁魄亍咛l序1-同―:mm■ MraHsaiffl号吁魄亍咛l序1-同―:mm顽Ik*iarbrCUTuh.KLln?O19E.I图2不同尺寸下8输入nand内部节点随输入电压变化曲线通过对上面波形(图2)的分析我们可以得到:下我们均用该输入情形来近似t卬的最坏情形。pHL利用输入为A=B=C=D=E=F=G=1,H=0—1来近似等效tpHL的最坏情形是可行的。因为我们可以看到在此情形下节点1~7的电压近似都等于VDD-VTH下我们均用该输入情形来近似t卬的最坏情形。pHL当我们以参考反相器为标准设计8输入与非门时,最坏情形下的tpLH大于tpHL,这时设计的主要矛盾在于减小th|OpHLmwte&IOC.ub.mwte&IOC.ub.§ m嘶f"a「一 …5d*r~3i图3负载电容为门自身本征电容时不同尺寸nand的瞬态响应波形图分析上面波形(图3)我们可以得到:当负载电容为门自身本征电容时,增加晶体管的尺寸tpHL是没有减少的。由图2得到的结论我们可以近似认为此时是内部节点全部被充电到VDD-VTH时的最坏情形。简单作一个半定量解释:对于晶体管导通时的等效电阻R随着晶体管尺寸增大近似线性减小,而节点电容eq却近似线性增大,所以电阻和电容的乘积基本不变,延时也就不随尺寸变化。这个结论其实与在反相器实验中的“本征延时与反相器的尺寸无关”类似。而对于tpLH我们可以看到,它随尺寸增大不但没有减少反而略有增加,这可以解释为:在此情形下8个pmos并联构成的上拉网络只有一个导通,对于电阻的变化只有一个晶体管“贡献”,但是对于电容变化却是8个晶体管漏端寄生电容共同“贡献”,这种结果使得tpLH随着尺寸增加而略有增大。这样我们可以得到:当负载电容为门自身的本征电容时,增加晶体管尺寸不仅不能改善延时,反而“晶体管尺寸的增加会产生较大的寄生电容,这不仅会增加该门的传播延时,还会对前一级的门产生较大的负载。”②负载电容与扇出电容为主时:这里我们只需对①中的代码进行稍稍的修改,即在输出端加一个相对于门自身本征电容大的多的负载电容CL。这里我们取CL=50fF。修改完的HSPICE网表代码如下:nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.printv(out)v(a).paramwn='4*wp'mp1outavddvddP_LV_18_MMw=wpl=0.18ummp2outavddvddP_LV_18_MMw=wpl=0.18ummp3outavddvddPLV18MMw=wpl=0.18um
mp4outavddvddP_LV_18_MMw=wpl=0.18ummp5outavddvddP_LV_18_MMw=wpl=0.18ummp6outavddvddP_LV_18_MMw=wpl=0.18ummp7outavddvddP_LV_18_MMw=wpl=0.18ummp8outhvddvddP_LV_18_MMw=wpl=0.18ummn1outa1gndN_LV_18_MMw=wnl=0.18ummn21a2gndN_LV_18_MMw=wnl=0.18ummn32a3gndN_LV_18_MMw=wnl=0.18ummn43a4gndN_LV_18_MMw=wnl=0.18ummn54a5gndN_LV_18_MMw=wnl=0.18ummn65a6gndN_LV_18_MMw=wnl=0.18ummn76a7gndN_LV_18_MMw=wnl=0.18ummn87hgndgndN_LV_18_MMw=wnl=0.18umcloutgnd50ffvddvddgnddc1.8vaagnddc1.8vhhgndpulse0v1.8v500ps100ps100ps2ns4ns.datawp_tablewp0.36um0.54um0.72um.enddata.tran1ps4.5nssweepdata=wp_table.end剧l角凯55L<H-TS2.1.2EM--T图4.tran1ps4.5nssweepdata=wp_table.end剧l角凯55L<H-TS2.1.2EM--T图4负载电容以扇出电容为主时不同尺寸nand的瞬态响应波形图通过对上面波形(图4)的分析我们可以得到:当负载电容以扇出电容为主时,放大晶体管尺寸能使晶体管具有更大的充放电电流从而能够减小时间常数。这个结论其实与反相器链的结论是类似的,而更为一般的方法应该是在输出端与负载间接一个缓冲器链(或反相器链),使得门自身的本征电容,缓冲器(或反相器)的本征电容,扇出电容挨的比例递增,选择适当的级数,可以使得门的延时得到优化。2、逐级加大晶体管尺寸:根据书上结论“逐级加大晶体管尺寸可以改善tpHL”,显然只有在tpHL为制约8输入与非门的瓶颈时,这种改善才是有意义的。而我们在1中看到的按照参考反相器设计的8输入与非门延时的限制在于tpLH而不是tpHL,所以这里我们抛开按照参考反相器设计的8输入与非门而采用最小尺寸的nmos下拉网络对比逐级增大的nmos下拉网络,看看这种设计能够给tH|pHL带来的改善程度,同时看看它对tpLH有何影响。此处我们不考虑扇出电容CL。HSPICE网表代码如下所示:nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.printv(out)v(a)v(h).paramwn1='0.18um*(1+1*n)'.paramwn2='0.18um*(1+2*n)'.paramwn3='0.18um*(1+3*n)'.paramwn4='0.18um*(1+4*n)'.paramwn5='0.18um*(1+5*n)'.paramwn6='0.18um*(1+6*n)'.paramwn7='0.18um*(1+7*n)'.paramwn8='0.18um*(1+8*n)'mp1outavddvddP_LV_18_MMw=0.36uml=0.18ummp2outavddvddP_LV_18_MMw=0.36uml=0.18ummp3outavddvddP_LV_18_MMw=0.36uml=0.18ummp4outavddvddP_LV_18_MMw=0.36uml=0.18ummp5outavddvddP_LV_18_MMw=0.36uml=0.18ummp6outavddvddP_LV_18_MMw=0.36uml=0.18ummp7outavddvddP_LV_18_MMw=0.36uml=0.18ummp8outhvddvddP_LV_18_MMw=0.36uml=0.18ummn1outa1gndN_LV_18_MMw=wn1l=0.18ummn21a2gndN_LV_18_MMw=wn2l=0.18ummn32a3gndN_LV_18_MMw=wn3l=0.18ummn43a4gndN_LV_18_MMw=wn4l=0.18ummn54a5gndN_LV_18_MMw=wn5l=0.18ummn65a6gndN_LV_18_MMw=wn6l=0.18ummn76a7gndN_LV_18_MMw=wn7l=0.18ummn87hgndgndN_LV_18_MMw=wn8l=0.18umvddvddgnddc1.8vaagnddc1.8vvhhgndpulse0v1.8v1ns100ps100ps2ns4ns.datan_tablen3.enddata.end口EuuJa pr", Ud-F盛网吕E!成%;T咔|席|.end口EuuJa pr", Ud-F盛网吕E!成%;T咔|席|亍呷:七.tran1ps5nssweepdata=n_table0 皿. i. h 兽J -Xi 仝J 』 !iC.tum.il心图5下拉网络的NMOSFET尺寸按不同公差递增的8输入与非门的瞬态响应波形图分析上面波形(图5)我们可以得出以下结论:下拉网络逐级递增晶体管尺寸后的8输入与非门的tpHL与下拉网络按最小尺寸设计的8输入与非门的tpHL有明显改善;对于下拉网络逐级递增晶体管尺寸后的8输入与非门,不同的公差所能带来的tpHL的改善是十分有限的;逐级递增晶体管尺寸后的8输入与非门的tpLH是增加的,换言之,这种改善是以牺牲tpLH为代价的。此外tpLH的增加是随公差的增加而明显增加的;采用该技术的前提条件是:首先,改善前tpHL大于tpLH,其次改善后的tpHL的减小量大于tpLH的增加量。满足这两个条件后才是有意义的。3、重新安排输入:编写的HSPICE网表代码如下:输入模式为A=B=C=D=E=F=G=1,H=0—1—0nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.printv(out)v(a)v(b)v(h)mp1outavddvddP_LV_18_MMw=0.36uml=0.18ummp2outavddvddP_LV_18_MMw=0.36uml=0.18ummp3outavddvddP_LV_18_MMw=0.36uml=0.18ummp4outavddvddP_LV_18_MMw=0.36uml=0.18ummp5outavddvddP_LV_18_MMw=0.36uml=0.18ummp6outavddvddP_LV_18_MMw=0.36uml=0.18ummp7outavddvddP_LV_18_MMw=0.36uml=0.18ummp8outhvddvddP_LV_18_MMw=0.36uml=0.18ummn1outa1gndNLV18MMw=0.72uml=0.18ummn21a2gndN_LV_18_MMw=0.72uml=0.18ummn32a3gndN_LV_18_MMw=0.72uml=0.18ummn43a4gndN_LV_18_MMw=0.72uml=0.18ummn54a5gndN_LV_18_MMw=0.72uml=0.18ummn65a6gndN_LV_18_MMw=0.72uml=0.18ummn76a7gndN_LV_18_MMw=0.72uml=0.18ummn87hgndgndN_LV_18_MMw=0.72uml=0.18umvddvddgnddc1.8vaagnddc1.8vvhhgndpulse0v1.8v1ns100ps100ps2ns4ns.tran1ps5ns.end②输入模式为A=0f1f0,B=C=D=E=F=G=H=1nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.printv(out)v(a)v(b)v(h)mp1outavddvddP_LV_18_MMw=0.36uml=0.18ummp2outbvddvddP_LV_18_MMw=0.36uml=0.18ummp3outbvddvddP_LV_18_MMw=0.36uml=0.18ummp4outbvddvddP_LV_18_MMw=0.36uml=0.18ummp5outbvddvddP_LV_18_MMw=0.36uml=0.18ummp6outbvddvddP_LV_18_MMw=0.36uml=0.18ummp7outbvddvddP_LV_18_MMw=0.36uml=0.18ummp8outbvddvddP_LV_18_MMw=0.36uml=0.18ummn1outa1gndN_LV_18_MMw=0.72uml=0.18ummn21a2gndN_LV_18_MMw=0.72uml=0.18ummn32b3gndN_LV_18_MMw=0.72uml=0.18ummn43b4gndN_LV_18_MMw=0.72uml=0.18ummn54b5gndN_LV_18_MMw=0.72uml=0.18ummn65b6gndN_LV_18_MMw=0.72uml=0.18ummn76b7gndN_LV_18_MMw=0.72uml=0.18ummn87bgndgndN_LV_18_MMw=0.72uml=0.18umvddvddgnddc1.8vbbgnddc1.8vvaagndpulse0v1.8v1ns100ps100ps2ns4ns.tran1ps5ns.end分析下面波形(图6)我们可以得到:不同输入模式下的时间延时(无论是tpLH还是tpHL)都是不同的。而且越靠近输出端,时间延时越短。这可以解释为:对于tpHL,在输入模式为a=B=C=D=E=F=G=1,H=0—1的情况下,需要对out及内部的1~7节点电容(见图1)进行放电,而在输入模式为A=0—1,B=C=D=E=F=G=H=1的情况下,电路已经提前对1~7节点电容进行放电。所以后者比前者具有更小的tpHL。(这也就解释在2中逐级增大晶体管尺寸和增大逐级增加的尺寸公差为什么会使得tpLH增大。)对于tpLH,在输入模式为A=B=C=D=E=F=G=1,H=1—0的情况下,VDD不仅要给out节点电容充电,还要给内部1~7
节点电容充电,而在而在输入模式为A=1—0,B=C=D=E=F=G=H=1的情况下,VDD只需给out节点电容充电。所以后者比前者具有更小的tpLH。(这也正是我们将输入模式为H=0—1,A=B=C=D=E=F=G=1定为研究tH的最坏情形的原因。)所以通过重新安排输入,使关键路径pLH靠近门的输出节点是可以改善门的延时的。“AawMTmi0-2/XUjW-SFI“AawMTmi0-2/XUjW-SFII]LMi . _,盛㈣吕ej成亍项席亍?|可渴8笔可 "中#5fp*■:图6两种输入模式下的瞬态响应波形图4、重组逻辑结构:对八输入与非逻辑重组逻辑结构,我们可以得到下图(图7~9)三种逻辑结构:①利用四输入与非门、或非门和反相器实现八输入与非逻辑:HDEFGABNAND2图7HDEFGABNAND2图7利用四输入与非门、或非门和反相器实现八输入与非逻辑HSPICE网表代码如下:nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.globalvddxnand1aaaa1nandfourxnand2aaah2nandfourxnor123nortwoxinv3outinvvddvddgnddc1.8vvaagnddc1.8vvhhgndpulse0v1.8v500ps100ps100ps1ns2ns.subcktinvinoutwn=0.18umwp=0.36um
mloutinvddvddP_LV_18_MMw=wpl=0.18umm2outingndgndN_LV_18_MMw=wnl=0.18um.endsinv.subcktnandfourabcdoutwn=0.72umwp=0.36ummp1outavddvddP_LV_18_MMw=wpl=0.18ummp2outbvddvddP_LV_18_MMw=wpl=0.18ummp3outcvddvddP_LV_18_MMw=wpl=0.18ummp4outdvddvddP_LV_18_MMw=wpl=0.18ummn1outa1gndN_LV_18_MMw=wnl=0.18ummn21b2gndN_LV_18_MMw=wnl=0.18ummn32c3gndN_LV_18_MMw=wnl=0.18ummn43dgndgndN_LV_18_MMw=wnl=0.18um.endsnandfour.subcktnortwoaboutwn=0.18umwp=0.72ummp1outa1vddP_LV_18_MMw=wpl=0.18ummp21bvddvddP_LV_18_MMw=wpl=0.18ummn1outagndgndN_LV_18_MMw=wnl=0.18ummn2outbgndgndN_LV_18_MMw=wnl=0.18um.endsnortwo.tran1ps2.5ns.end利用四输入或非门、与非门和反相器实现八输入与非逻辑:NAND1■、 2CDEFGNAND2INVNAND33一、NAND44图8利用四输入或非门、与非门和反相器实现八输入与非逻辑HSPICE网表代码如下:nand.lib'C:\avanti\MM180_LVT18_V113.LIB'TT.globalvddxnand1aa1nandtwoxnand2aa2nandtwoxnand3aa3nandtwoxnand4ah4nandtwoxnor12345norfour
xinv5outinvvddvddgnddc1.8vvaagnddc1.8vvhhgndpulse0v1.8v500ps100ps100ps1ns2ns.subcktinvinoutwn=0.18umwp=0.36umm1outinvddvddP_LV_18_MMw=wpl=0.18umm2outingndgndN_LV_18_MMw=wnl=0.18um.endsinv.subcktnandtwoaboutwn=0.36umwp=0.36ummp1outavddvddP_LV_18_MMw=wpl=0.18ummp2outbvddvddP_LV_18_MMw=wpl=0.18ummn1outa1gndN_LV_18_MMw=wnl=0.18ummn21bgndgndN_LV_18_MMw=wnl=0.18um.endsnandtwo.subcktnorfourabcdoutwn=0.18umwp=1.44ummp1outa1vddP_LV_18_MMw=wpl=0.18ummp21b2vddP_LV_18_MMw=wpl=0.18ummp32c3vddP_LV_18_MMw=wpl=0.18ummp43dvddvddP_LV_18_MMw=wpl=0.18ummn1outagndgndN_LV_18_MMw=wnl=0.18ummn2outbgndgndN_LV_18_MMw=wnl=0.18ummn3outcgndgndN_LV_18_MMw=wnl=0.18ummn4outdgndgndN_LV_18_MMw=wnl=0.18um.endsnorfour.tran1ps2.5ns.end利用与非门和或非门实现八输入与非逻辑:ABCDEFGH1NAND1NOR12NAND2ABCDEFGH1NAND1NOR12NAND
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防工程施工改造合同
- 行政管理的毕业答辩
- 借款楼房抵押合同
- 电梯安全管理人员研习练习卷以及答案
- 变更合同条款补充协议
- 品牌设计服务合同协议书
- 2024-2025学年语文三年级上册第三单元教学设计(统编版)
- 设备采购合同要点
- 特种设备的安全与监管作业指导书
- 促进家校合作的班级活动计划
- 云南省曲靖市2025届高三上学期第一次质量检测数学试题 含解析
- 高中化学总复习基础知识填空
- 2025年01月工业和信息化部工业文化发展中心第三批社会公开招聘2人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 江苏无锡历年中考语文古诗欣赏试题汇编(2003-2022)
- 西辽河流域考古学文化的英语译介和传播
- 北师大版四年级数学下册期中检测试卷(2套)(附答案)
- 2024CSCO免疫检查点抑制剂相关的毒性管理指南
- 专题07大气的组成和垂直分层(解析版)
- 2025年广发银行股份有限公司招聘笔试参考题库含答案解析
- 脚手架拆除施工专项方案(最终)
- 2025年酒店财务部工作计划(5篇)
评论
0/150
提交评论