2023届江苏省东台市第二教育联盟数学八年级第一学期期末达标测试试题含解析_第1页
2023届江苏省东台市第二教育联盟数学八年级第一学期期末达标测试试题含解析_第2页
2023届江苏省东台市第二教育联盟数学八年级第一学期期末达标测试试题含解析_第3页
2023届江苏省东台市第二教育联盟数学八年级第一学期期末达标测试试题含解析_第4页
2023届江苏省东台市第二教育联盟数学八年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣62.分式方程的解为()A. B. C. D.3.下列命题是真命题的是()A.如果,那么B.三个内角分别对应相等的两个三角形相等C.两边一角对应相等的两个三角形全等D.如果是有理数,那么是实数4.如图,是的角平分线,;垂足为交的延长线于点,若恰好平分.给出下列三个结论:①;②;③.其中正确的结论共有()个A. B. C. D.5.若将一副三角板按如图所示的方式放置,则下列结论:①;②如果,则有;③如果,则有;④如果,必有;其中正确的有()A.①②③ B.①②④ C.②③④ D.①②③④6.如图,数轴上点N表示的数可能是()A. B. C. D.7.一个多边形的内角和是720°,则这个多边形的边数是()A.8 B.9 C.6 D.118.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠D B.∠ABC=∠F C.BE=CF D.AC=DF9.估计4﹣的值为()A.0到1之间 B.1到2之间 C.2到3之间 D.3到4之间10.下列各式:中,是分式的共有()个A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,,交于,于,若,则等于_______12.已知(a−1,5)和(2,b−1)关于x轴对称,则的值为_________.13.如图,在四边形中,且,,,平分交的延长线于点,则_________.14.25的平方根是______,16的算术平方根是______,-8的立方根是_____.15.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为______.16.函数y=中的自变量的取值范围是____________.17.已知正数x的两个不同的平方根是2a﹣3和5﹣a,则x的值为______.18.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.三、解答题(共66分)19.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口490的普通公路升级成了比原来长度多35的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2,求公路升级以后汽车的平均速度20.(6分)化简:.21.(6分)某村深入贯彻落实习近平新时代中国特色社会主义思想,认真践行“绿水青山就是金山银山”理念在外打工的王大叔返回江南创业,承包了甲乙两座荒山,各栽100棵小枣树,发现成活率均为97%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的小枣,每棵的产量如折线统计图所示.(1)直接写出甲山4棵小枣树产量的中位数;(2)分别计算甲乙两座小枣样本的平均数,并判断那座山的样本的产量高;(3)用样本平均数估计甲乙两座山小枣的产量总和.22.(8分)计算(1)[2a(a2b-ab2)+ab(ab-a2)]a2b(2)23.(8分)中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了位同学,扇形统计图中的,的度数是;(2)请将条形统计图补充完整;(3)估计全校共多少学生参加了球类运动.24.(8分)如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.(1)求点的坐标;(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.25.(10分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?26.(10分)已知,,求的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、C【解析】两边同乘2x(x-1),得1(x-1)=2x,整理、解得:x=1.检验:将x=1代入2x(x-1)≠0,∴方程的解为x=1.故选C3、D【分析】根据绝对值的意义、全等三角形的判定、实数的分类等知识对各选项逐一进行判断即可.【详解】A.如果,那么,故A选项错误;B.三个内角分别对应相等的两个三角形不一定全等,故B选项错误;C.两边一角对应相等的两个三角形不一定全等,当满足SAS时全等,当SSA时不全等,故C选项错误;D.如果是有理数,那么是实数,正确,故选D.【点睛】本题考查了真假命题的判断,涉及了绝对值、全等三角形的判定、实数等知识,熟练掌握和灵活运用相关知识是解题的关键.4、D【分析】由BF∥AC,是的角平分线,平分得∠ADB=90;利用AD平分∠CAB证得△ADC≌△ADB即可证得DB=DC;根据证明△CDE≌△BDF得到.【详解】∵,BF∥AC,∴EF⊥BF,∠CAB+∠ABF=180,∴∠CED=∠F=90,∵是的角平分线,平分,∴∠DAB+∠DBA=(∠CAB+∠ABF)=90,∴∠ADB=90,即,③正确;∴∠ADC=∠ADB=90,∵AD平分∠CAB,∴∠CAD=∠BAD,∵AD=AD,∴△ADC≌△ADB,∴DB=DC,②正确;又∵∠CDE=∠BDF,∠CED=∠F,∴△CDE≌△BDF,∴DE=DF,①正确;故选:D.【点睛】此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.5、B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,

∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,

∴∠1=∠3,故本选项正确.②∵∠2=30°,

∴∠1=90°-30°=60°,

∵∠E=60°,

∴∠1=∠E,

∴AC∥DE,故本选项正确.③∵∠2=30°,

∴∠3=90°-30°=60°,

∵∠B=45°,

∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.6、C【分析】根据题意可得2<N<3,即<N<,在选项中选出符合条件的即可.【详解】解:∵N在2和3之间,∴2<N<3,∴<N<,∵,,,∴排除A,B,D选项,∵,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.7、C【分析】根据多边形内角和公式可直接进行求解.【详解】解:由题意得:,解得:;故选C.【点睛】本题主要考查多边形内角和,熟记多边形内角和公式是解题的关键.8、C【分析】根据“SAS”证明两个三角形全等,已知AB=DE,∠B=∠DEF,只需要BC=EF,即BE=CF,即可求解.【详解】用“SAS”证明△ABC≌△DEF∵AB=DE,∠B=∠DEF∴BC=EF∴BE=CF故选:C【点睛】本题考查了用“SAS”证明三角形全等.9、A【分析】首先确定的取值范围,进而利用不等式的性质可得﹣的范围,再确定4﹣的值即可.【详解】解:∵<,∴3<<4,∴﹣4<﹣<﹣3,∴0<4﹣<1,故选:A.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.10、B【分析】根据分式的定义即可判断.【详解】是分式的有,,,有3个,故选B.【点睛】此题主要考查分式的判断,解题的关键是熟知分式的定义.二、填空题(每小题3分,共24分)11、1【解析】过点P做PE⊥OB,根据角平分线的性质可得PD=PE,利用平行线的性质求得∠BCP=10°,然后利用含10°直角三角形的性质求解.【详解】解:过点P做PE⊥OB∵,,PE⊥OB∴∠AOB=10°,PD=PE又∵∴∠PCE=∠AOB=10°在Rt△PCE中,∠PCE=10°,PC=6∴PE=∴PD=1故答案为:1.【点睛】本题考查角平分线的性质,平行线的性质,含10°直角三角形的性质,掌握相关性质定理,正确添加辅助线是解题关键.12、-1【分析】根据两点关于x轴对称的坐标的关系,得a﹣1=2,b﹣1=﹣5,求出a,b的值,进而即可求解.【详解】∵和关于x轴对称,∴解得:,∴.故答案为:﹣1.【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称坐标的关系,掌握两点关于x轴对称,横坐标相等,纵坐标互为相反数,是解题的关键.13、3;【分析】由,AE平分,得到∠EAB=∠F,则AB=BF=8,然后即可求出CF的长度.【详解】解:∵,∴∠DAE=∠F,∵AE平分,∴∠DAE=∠EAB,∴∠EAB=∠F,∴AB=BF=8,∵,∴;故答案为:3.【点睛】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.14、4-1【分析】首先利用平方根的定义求解;接着利用算术平方根的定义求解;最后利用立方根的定义求解.【详解】解:15的平方根是±5,

16的算术平方根是4,

-8的立方根是-1.

故答案为:±5,4,-1.【点睛】此题分别考查了算术平方根、平方根及立方根的定义,解题的关键是熟练掌握这些相关定义才能很好解决问题.15、6.9×10﹣1.【解析】试题分析:对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000069=6.9×10﹣1.考点:科学记数法.16、x≠1【分析】根据分母不等于0列式计算即可得解.【详解】根据题意得,x-1≠0,解得:x≠1.故答案为x≠1.17、49【解析】因为一个正数的平方根有两个,它们互为相反数,所以2a﹣3+5﹣a=0,解得:a=﹣2,所以2a﹣3=﹣7,因为﹣7是正数x的一个平方根,所以x的值是49,故答案为:49.18、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.三、解答题(共66分)19、【分析】设公路升级以前汽车的平均速度为,则公路升级以后汽车的平均速度为,根据时间路程÷速度结合升级后行驶时间缩短了,即可得出关于的分式方程,解之经检验后即可得出结论.【详解】解:设公路升级以前汽车的平均速度为,则公路升级以后汽车的平均速度为,依题意,得:,解得:,经检验,是所列分式方程的解,且符合题意,.答:公路升级以后汽车的平均速度为.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、【分析】原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到最简结果.【详解】===.【点睛】本题考查了分式的加减乘除混合运算,解题的关键是熟练运用分式的运算法则并正确分解因式.21、(1)38;(2),,甲山样本的产量高;(3)甲乙两山小枣的产量总和为7663千克.【解析】(1)根据中位数的定义求解可得;(2)根据平均数的定义分别计算出甲、乙两山样本的产量,据此可得;(3)用平均数乘以枣树的棵树,求得两山的产量和,再乘以成活率即可得.【详解】(1)∵甲山4棵枣树产量为34、36、40、50,∴甲山4棵小枣树产量的中位数为=38(千克);(2)(千克),(千克),,且两山抽取的样本一样多,所以,甲山样本的产量高.(3)总产量为:答:甲乙两山小枣的产量总和为7663千克.【点睛】本题主要考查折线统计图及中位数、平均数,解题的关键是了解中位数和平均数的定义,根据折线统计图得出解题所需的数据.22、(1);(2).【分析】(1)先计算括号内的运算,然后再计算整式除法运算,即可得到答案;(2)先通分计算括号内的运算,然后计算分式除法,即可得到答案.【详解】解:(1)原式===;(2)原式===;【点睛】本题考查了分式的混合运算,分式的化简求值,整式的运算混算,整式的化简,解题的关键是熟练掌握运算法则进行解题.23、(1)200,40,36°;(2)见详解;(3)900人.【分析】(1)根据A组的人数为40,占20%即可求得抽取的总人数,根据百分比的意义求得m的值,利用360°乘以对应的百分比求得α;

(2)利用总数减去其它组的人数求得B组的人数,即可补全直方图;

(3)利用总人数乘以对应的比例求解.【详解】(1)∵A组的人数为40,占20%,∴总人数为:40÷20%=200(人)∵C组的人数为80,∴m=80÷200×100=40∵D组的人数为20,∴∠α=20÷200×360°=36°.故答案是:200,40,36°;(2)B组的人数=200-40-80-20=60(人)(3)3000×=900(人).答:估计全校共900学生报名参加了球类运动.【点睛】本题考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24、(1)A(8,0),C(0,4);(2)10;(3)y=2x-6,(4,2)【分析】(1)设OC=a,则OA=2a,在直角△AOC中,利用勾股定理即可求得a的值,则A和C的坐标即可求得;(2)重叠部分是△CEF,利用勾股定理求得AE的长,然后利用三角形的面积公式即可求解;(3)根据(1)求得AC的表达式,再由(2)求得E、F的坐标,利用待定系数法即可求得直线EF的函数解析式,联立可得点D坐标.【详解】解:(1)∵,∴设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论