版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3
DescriptiveStatistics:NumericalMethods
PartAMeasuresofLocationMeasuresofVariabilityx%MeasuresofLocationMeanMedianModePercentilesQuartilesCountingaverage:mean、harmonicmean、geometricmean;Positionaverage:median、mode、percentiles,quartiles。Example:ApartmentRents Givenbelowisasampleofmonthlyrentvalues($)forone-bedroomapartments.Thedataisasampleof70apartmentsinaparticularcity.Thedataarepresentedinascendingorder.
MeanThemeanofadatasetistheaverageofallthedatavalues.Ifthedataarefromasample,themeanisdenotedby
Ifthedataarefromapopulation,themeanisdenotedbym(mu).Example:ApartmentRentsMeanSTAT[e.g.]agefortenpersons:15,16,16,17,17,17,18,18,18,18。Findtheaverageage.STATAttention:(1)weight:theamounttobalancedegreeforf/f(2)calculationforthemeanofclasswidthseries:usethemidpointtosubstitutevariablex,andcalculateitwithformula.STATThemeanofratioAnalysisofingredientsformean:STATHarmonicMeana、definition:thereciprocalofmeanwhichthevariables’reciprocalshave.b、formula:Simpleharmonicmean:Weightedharmonicmean:Meanwhile,m=xfisweightSTAT[e.g.]theinformationforfourcorporationsbelongingtoonebureauasfollows,trytocalculatetheaverageplanaccomplishedpercentagefortheindustrybureau.
Weightedharmonicmean:(itcanbeusedwhenvariableshasdifferentweight)STAT1、Basicformula:mean=symbolgross/populationgrossThepreconditionforthemeanandharmonicmean:A、whenthedenominatorisknown,meancanbeusedincalculation;(numeratorisunknown)B、whenthenumeratorisknown,harmonicmeancanbeusedincalculation;(denominatorisunknown)2、Weightedharmonicmean:(itcanbeusedwhenvariableshasdifferentweight)HarmonicmeanisthetransformationofmeanSTATa、definition:nhypo-squareofnvariables’product.b、precondition:It’ssuitabletocomputetheaverageofratioorspeed.c、formula:d、notice:whenthereisazerooranegativevalueintheobservation,itisnotsuitabletousegeometricmeanforcalculation.e、ifusethesamedatatocalculatethearithmeticmean、harmonicmeanandgeometricmeanseparately,therelationwillshowasfollow:GeometricMeanMedianThemedianofadatasetisthevalueinthemiddlewhenthedataitemsarearrangedinascendingorder.Foranoddnumberofobservations,themedianisthemiddlevalue.Foranevennumberofobservations,themedianistheaverageofthetwomiddlevalues.MedianThemedianisthemeasureoflocationmostoftenreportedforannualincomeandpropertyvaluedata.Afewextremelylargeincomesorpropertyvaluescaninflatethemean.[e.g.]theagesofnineofficersinsectionoffice:24,25,25,26,26,27,28,29,55Sequence:A1,A2,A3,A4,A5,A6,A7,A8,A9Example:ApartmentRentsMedian Median=50thpercentile
i=(p/100)n=(50/100)70=35.5 Averagingthe35thand36thdatavalues: Median=(475+475)/2=475STATEx:median=180/2=theninetieth,soMeoughttotheageoftheninetiethSo:Me=18。whenmaterialisgrouped,anditformsintomonomialvariablesequence,middlepoint=f/2STAT(3)Thedatahasalreadygroupingandformintotypeofclassintervaloffluentsequence
(A)Listhelowerwardlimitofthemean,theUistheupwardlimit(B)Iistheclassintervalofmeaninplaceset(C)Sm-1isthesumofsmallerthaneachnumberoftimesofmedian(D)Sm+1isthesumoflargerthaneachnumberoftimesofmedian(E)fmisthetimesofmeaninplaceset
STAT[EX]lowerwardformula:
upwardformula:
AndSTATdeduce:
506070(L)80(U)90100
xy103060110150180(Sm-1)TheninetiethpersonMe=L+x=U-ySupposethatthevariableofmediangroupsisaveragedistribution,thentakethemethodsofinterpolationbyproportionalpartsSTAT3、Attentionoftheproblems:(1)Notaffectedbytheextremevalue,moresteadiness.
(2)Themediantakesvalueonlybearononeortwonumeralvaluein
neutralposition,makeuseofinformationinsufficiency,ignoreothersizeofdata,andisnotsuitforalgebraicoperation.ModeThemodeofadatasetisthevaluethatoccurswithgreatestfrequency.Thegreatestfrequencycanoccurattwoormoredifferentvalues.Ifthedatahaveexactlytwomodes,thedataarebimodal.Ifthedatahavemorethantwomodes,thedataaremultimodal.Example:ApartmentRentsMode
450occurredmostfrequently(7times) Mode=450STAT1、definition:Themodeisthedatavaluethatoccurswithgreatestfrequency。ExpressedbytheMo。A、20,15,18,20,20,22,20,23;n=8Mo=20B、20,20,15,19,19,20,19,25;n=8Mo=20Mo=19C、10,11,13,16,15,25,8,12;n=8,nomode2、calculation(1)Ifthedataisthemonomialnumbersequence。
Firstidentifythemodegroups
thenidentifymode:Mo=18STAT2)IfthedataistypesofclassintervalofnumbersequenceMakesuremodalclassfirst;Thenusethefollowformulatocalculate:Signmeaning:(A)Listhelowerlimitofmodalclass,Uistheupward;(B)Iistheclassintervalofmodalclass;(C)1=fm-fm-1,isthedifferenceoforderofmodalclassandandex-numberoforder
2=fm-fm+1,isthedifferenceoforderofmodalclassandheelnumberoforderSTATThecharacteristicsofmodetakesvalue(1)Advantage:notaffectedbytheextremevalue(2)Disadvantage:DidnotmakeuseofallinformationLackthesensitivityandisnotsuitableforthealgebraoperation
PercentilesApercentileprovidesinformationabouthowthedataarespreadovertheintervalfromthesmallestvaluetothelargestvalue.Admissiontestscoresforcollegesanduniversitiesarefrequentlyreportedintermsofpercentiles.Thepthpercentileofadatasetisavaluesuchthatatleastppercentoftheitemstakeonthisvalueorlessandatleast(100-p)percentoftheitemstakeonthisvalueormore.Arrangethedatainascendingorder.Computeindexi,thepositionofthepthpercentile.
i=(p/100)nIfiisnotaninteger,roundup.Thep
thpercentileisthevalueinthei
thposition.Ifiisaninteger,thep
thpercentileistheaverageofthevaluesinpositionsiandi
+1.PercentilesExample:ApartmentRents90thPercentile
i=(p/100)n=(90/100)70=63 Averagingthe63rdand64thdatavalues: 90thPercentile=(580+590)/2=585QuartilesQuartilesarespecificpercentilesFirstQuartile=25thPercentileSecondQuartile=50thPercentile=MedianThirdQuartile=75thPercentileExample:ApartmentRentsThirdQuartile
Thirdquartile=75thpercentile
i=(p/100)n=(75/100)70=52.5=53 Thirdquartile=525STATTherelationshipamountofMean、MedianandMode(a)Therelationshipofthem:1、quantitativerelations:(1)symmetricdistribution:Thispointallequal35。
STAT(2)BiaseddistributionA、Divergeright(positive):STATB、Divergeleft(negative):BusinessStatistics,AFirstCourse(4e)©2006Prentice-Hall,Inc.Chap3-35ShapeofaDistributionDescribeshowdataaredistributedMeasuresofshapeSymmetricorskewedMean=Median
Mean<Median
Median<MeanRight-SkewedLeft-SkewedSymmetricMeasuresofVariabilityItisoftendesirabletoconsidermeasuresofvariability(dispersion),aswellasmeasuresoflocation.Forexample,inchoosingsupplierAorsupplierBwemightconsidernotonlytheaveragedeliverytimeforeach,butalsothevariabilityindeliverytimeforeach.BusinessStatistics,AFirstCourse(4e)©2006Prentice-Hall,Inc.Chap3-37MeasuringvariationSmallstandarddeviationLargestandarddeviationSTATFunction:(1)Measurethesizeofmeanvaluerepresentativeness。(2)Reflectthedispersityofvariablevaluedistribution。(3)ReflecttheproportionalityandstabilityofdevelopingphenomenaMeasuresofVariabilityRangeInterquartileRangeA.DVarianceStandardDeviationCoefficientofVariationRangeTherangeofadatasetisthedifferencebetweenthelargestandsmallestdatavalues.Itisthesimplestmeasureofvariability.Itisverysensitivetothesmallestandlargestdatavalues.Example:ApartmentRentsRange
Range=largestvalue-smallestvalue Range=615-425=190InterquartileRangeTheinterquartilerangeofadatasetisthedifferencebetweenthethirdquartileandthefirstquartile.Itistherangeforthemiddle50%ofthedata.Itovercomesthesensitivitytoextremedatavalues.Example:ApartmentRentsInterquartileRange
3rdQuartile(Q3)=525 1stQuartile(Q1)=445 InterquartileRange=Q3-Q1=525-445=80STATA.D1、Definition:Theaveragedeviationofthevariableandthemean.2、Theformula:–5–2250522514STATExample:–5.61–2.611.394.395.612=11.222.615=13.051.398=11.224.393=13.1748.66VarianceThevarianceisameasureofvariabilitythatutilizesallthedata.Itisbasedonthedifferencebetweenthevalueofeachobservation(xi)andthemean(xforasample,mforapopulation).VarianceThevarianceistheaverageofthesquareddifferencesbetweeneachdatavalueandthemean.Ifthedatasetisasample,thevarianceisdenotedbys2.
Ifthedatasetisapopulation,thevarianceisdenotedby2.StandardDeviationThestandarddeviation
ofadatasetisthepositivesquarerootofthevariance.Itismeasuredinthesameunitsasthedata,makingitmoreeasilycomparable,thanthevariance,tothemean.Ifthedatasetisasample,thestandarddeviationisdenoteds.Ifthedatasetisapopulation,thestandarddeviationisdenoted(sigma).STATExample:Trytocalculatethevarianceandthestandarddeviationaboutthegradesofthese40studentsasfollowing:X5565758595Xf1105201200850380306-21.5-11.5-1.58.518.5462.25132.252.2572.25342.25924.5105836722.51369 4110S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业示范温室大棚安装协议
- 儿童玩具设计总监聘任合同
- 厂房水电施工合同:印刷业篇
- 演出器材租赁合同
- 生态农业园绿化施工合同
- 建筑公司项目经理聘请协议
- 知识产权保护合同规范
- 图书馆资料储存分类方法
- 煤矿安全监查员工作规范
- 旅游景点设施管理
- 2020年山东烟台中考满分作文《就这样被打动》9
- 2024-2030年中国盾构机行业发展趋势与投资策略建议报告
- 期中核心素质卷(试题)-2024-2025学年数学六年级上册北师大版
- 2024年重庆高考化学试题卷(含答案解析)
- 《Photoshop图像处理》5.《滤镜特效技巧的学习》试卷
- 坚持人民至上以人民为中心心得体会三篇
- 初中足球运球技术教案
- 华为HCIA OpenEuler H12-611认证必考试复习题库(含答案)
- 2024-2030年中国原油行业发展趋势及发展前景研究报告
- 20以内的加法口算练习题4000题 290
- 2024年秋季学期新人教版生物七年级上册课件 第三章 微生物 2.3.4 病毒
评论
0/150
提交评论