2022年辽宁省大连市高新区数学九年级第一学期期末学业水平测试试题含解析_第1页
2022年辽宁省大连市高新区数学九年级第一学期期末学业水平测试试题含解析_第2页
2022年辽宁省大连市高新区数学九年级第一学期期末学业水平测试试题含解析_第3页
2022年辽宁省大连市高新区数学九年级第一学期期末学业水平测试试题含解析_第4页
2022年辽宁省大连市高新区数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B.C. D.2.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角3.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.4.方程的解的个数为()A.0 B.1 C.2 D.1或25.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段6.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④7.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<28.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.9.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C. D.10.设,,是抛物线(,为常数,且)上的三点,则,,的大小关系为()A. B. C. D.11.按下面的程序计算:若开始输入的值为正整数,最后输出的结果为,则开始输入的值可以为()A. B. C. D.12.如图,l1∥l2∥l3,若,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.4二、填空题(每题4分,共24分)13.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.14.已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)15.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是________°.16.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________17.一元二次方程的解为________.18.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.三、解答题(共78分)19.(8分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.20.(8分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.21.(8分)在精准脱贫期间,江口县委、政府对江口教育制定了目标,为了保证2018年中考目标的实现,对九年级进行了一次模拟测试,现对这次模拟测试的数学成绩进行了分段统计,统计如表,共有2500名学生参加了这次模拟测试,为了解本次考试成绩,从中随机抽取了部分学生的数学成绩x(得分均为整数,满分为100分)进行统计后得到下表,请根据表格解答下列问题:(1)随机抽取了多少学生?(2)根据表格计算:a=;b=.分组频数频率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合计﹣1(3)设60分(含60)以上为合格,请据此估计我县这次这次九年级数学模拟测试成绩合格的学生有多少名?22.(10分)关于的一元二次方程有两个实数根,求的取值范围.23.(10分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.24.(10分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:;(2)联结AC,如果,求证:.25.(12分)求下列各式的值:(1)2sin30°﹣3cos60°(2)16cos245°﹣.26.小寇随机调查了若干租用共享单车市民的骑车时间t(单位:分),将获得的据分成四组(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),绘制了如下统计图,根据图中信息,解答下列问题:(1)小寇调查的总人数是人;(2)表示C组的扇形统计图的圆心角的度数是°;(3)如果小寇想从D组的甲、乙、丙、丁四人中随机选择两人进一步了解平时租用共享单车情况,请用列表或画树状图的方法求出丁被选中的概率.

参考答案一、选择题(每题4分,共48分)1、D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.2、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.3、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.4、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,

∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.5、A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.6、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.7、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.8、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.9、C【解析】试题分析:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.考点:1一次函数图像;2二次函数图像.10、C【分析】根据二次函数的性质得到抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,

而A(-2,y1)离直线x=-1的距离最近,C(2,y1)点离直线x=-1最远,

∴y1<y2<y1.

故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11、B【分析】由3x+1=22,解得x=7,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足3x+1=7,最后输出的结果也为22,可解得x=2即可完成解答.【详解】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数7,当两次后输出22时,3x+1=7,解得:x=2;故答案为B.【点睛】本题考查了一元一次方程的应用,根据程序框图列出方程和理解循环结构是解答本题的关键.12、C【解析】试题解析:根据平行线分线段成比例定理,可得:设解得:故选C.二、填空题(每题4分,共24分)13、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.14、【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.15、【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A,B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故答案为100°.【点睛】此题考查圆周角定理,圆的内接四边形的性质,解题关键在于掌握其定义.16、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形∆AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵顶点A,B恰好分别落在函数,的图象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴则tan∠ABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.17、,【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得,则或,解得,.故答案为:,.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18、或【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x,则五月份的营业额为:,六月份的营业额为:;故答案为:或.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“”.三、解答题(共78分)19、(1)详见解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由题意通过计算发现EQ=FQ=6,由此即可证明;(2)根据题意利用三角形的面积建立方程即可得出结论;(3)由题意分点E在Q的左侧以及点E在Q的右侧这两种情况,分别进行分析即可得出结论.【详解】解:(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面积为3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值为2秒;(3)解:分两种情况:Ⅰ.如图1中,点E在Q的左侧.①∠PEQ=∠CAD时,△EQP∽△ADC,∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD时,△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△EPQ∽△CAD,可得,即,解得:;综上所述,t的值为2秒或秒或秒时,△EPQ与△ADC相似.【点睛】本题是相似形综合题,主要考查矩形的性质和判定,三角函数,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.20、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.21、(1)200名;(2)124,0.16;(3)1925名【分析】(1)由题意根据频数分布表中的数据,可以计算出随机抽取的学生人数;(2)由题意根据(1)中的数据和频数分布表中的数据,可以计算出a和b的值;(3)根据频数分布表中的数据,即可计算出我县这次这次九年级数学模拟测试成绩合格的学生有多少名.【详解】解:(1)14÷0.07=200(名),即随机抽取了200名学生;(2)a=200×0.62=124,b=32÷200=0.16,故答案为:124,0.16;(3)2500×(0.62+0.15)=2500×0.77=1925(名),答:我县这次这次九年级数学模拟测试成绩合格的学生有1925名.【点睛】本题考查频数分布表和用样本估计总体,解答本题的关键是明确题意并求出相应的数据.22、.【分析】根据判别式即可求出的取值范围.【详解】∵,,,方程有两个实数根,∴,∴,∴.【点睛】本题主要考查了根的判别式的应用,解题的关键是熟记根的判别式.23、(1)抛物线的解析式为;顶点的坐标为;(2)3;(3)点的坐标为或.【分析】(1)用待定系数法即可求出抛物线的解析式,进而即可求出顶点坐标;(2)先将点C的横坐标代入抛物线的解析式中求出纵坐标,根据B,C的坐标得出,,从而有,最后利用求解即可;(3)设为.由于,所以当以,,三点为顶点的三角形与相似时,分两种情况:或,分别建立方程计算即可.【详解】解:(1)∵抛物线过原点,且与轴交于点,∴,解得.∴抛物线的解析式为.∵,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论