2022年武汉市九年级数学第一学期期末预测试题含解析_第1页
2022年武汉市九年级数学第一学期期末预测试题含解析_第2页
2022年武汉市九年级数学第一学期期末预测试题含解析_第3页
2022年武汉市九年级数学第一学期期末预测试题含解析_第4页
2022年武汉市九年级数学第一学期期末预测试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米2.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米 B.36米 C.米 D.米3.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A.1.6m B.1.5m C.2.4m D.1.2m4.关于x的方程的两个根是-2和1,则的值为()A.-8 B.8 C.16 D.-165.如图,一块含角的直角三角板绕点按顺时针方向,从处旋转到的位置,当点、点、点在一条直线上时,这块三角板的旋转角度为()A. B. C. D.6.如图,点A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半径为2,则图中阴影部分的面积是()A. B. C. D.7.用配方法解方程时,原方程可变形为()A. B. C. D.8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k<﹣ C.k<3 D.k>﹣39.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.函数与,在同一坐标系中的图象可能是()A.B.C.D.11.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥112.如图,正方形的边长为4,点在的边上,且,与关于所在的直线对称,将按顺时针方向绕点旋转得到,连接,则线段的长为()A.4 B. C.5 D.6二、填空题(每题4分,共24分)13.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是,则白色棋子的个数为_____.14.已知关于x的方程有两个不相等的实数根,则的取值范__________.15.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.16.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.17.不等式组的整数解的和是__________.18.若抛物线经过(3,0),对称轴经过(1,0),则_______.三、解答题(共78分)19.(8分)小华为了测量楼房的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处.已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房的高度.(计算结果精确到)(参考数据:,,)20.(8分)解方程21.(8分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)22.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.23.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.24.(10分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.25.(12分)如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。求证:DB平分∠ADE.26.为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,请根据以上观测数据求观光塔的高.

参考答案一、选择题(每题4分,共48分)1、A【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ²+CQ²=BC²可得(4x)²+(3x)²=102,解得:x=2或x=−2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=≈13.1,∴AB=AP−BQ−PQ=13.1−6−2=5.1,故选A.点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.2、B【分析】求滑下的距离,设出下降的高度,表示出水平高度,利用勾股定理即可求解.【详解】当时,,设此人下降的高度为米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得.故选:.【点睛】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.3、B【解析】分析:本题是利用三角形相似的判定和性质来求数据.解析:根据题意三角形相似,∴故选B.4、C【解析】试题解析:∵关于x的方程的两个根是﹣2和1,∴=﹣1,=﹣2,∴m=2,n=﹣4,∴=(﹣4)2=1.故选C.5、C【分析】直接利用旋转的性质得出对应边,再根据三角板的内角的度数得出答案.【详解】解:∵将一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,

∴BC与B'C是对应边,

∴旋转角∠BCB'=180°-30°=150°.

故选:C.【点睛】此题主要考查了旋转的性质,对应点与旋转中心所连线段的夹角等于旋转角,正确得出对应边是解题关键.6、B【分析】连接BC、OD、OC、BD,过O点作OE⊥CD于E点,先证△COD是等边三角形,再根据阴影部分的面积是S扇形COD-S△COD计算可得.【详解】如图所示,连接BC、OD、OC、BD,过O点作OE⊥CD于E点,

∵∠A=40°,AB=AC,

∴∠ABC=70°,

∵CD∥AB,

∴∠ACD=∠A=40°,

∴∠ABD=∠ACD=40°,

∴∠DBC=30°,

则∠COD=2∠DBC=60°,

又OD=OC,

∴△COD是等边三角形,∴OD=CD=2,DE=∴

则图中阴影部分的面积是S扇形COD-S△COD

故选:B.【点睛】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.7、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.8、A【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9、B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.10、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,

我们易得函数y=ax2+a的图象关于y轴对称,可排除A;

当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;

当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,

函数y=(a≠0)的图象位于第二、四象限,可排除B;

故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.11、C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C.【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.12、C【分析】如图,连接BE,根据轴对称的性质得到AF=AD,∠EAD=∠EAF,根据旋转的性质得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根据全等三角形的性质得到FG=BE,根据正方形的性质得到BC=CD=AB=1.根据勾股定理即可得到结论.【详解】解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故选:C.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题(每题4分,共24分)13、1.【分析】设白色棋子的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:设白色棋子的个数为x个,根据题意得:=,解得:x=1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.14、且;【分析】根据一元二次方程的定义和根的判别式得出不等式组,求出不等式组的解集即可.【详解】∵关于x的方程(k-1)x1-x+1=0有两个不相等的实数根,∴k-1≠0且△=(-1)1-4(k-1)•1=-4k+9>0,即,解得:k<且k≠1,故答案为k<且k≠1.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式组是解此题的关键.15、10【分析】当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O到顶点A的距离最大.

则OA=AB=10.

故答案是:10.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.16、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.17、【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解①得:x<1;解②得:x>−3;∴原不等式组的解集为−3<x<1;∴原不等式组的所有整数解为−2、−1、0∴整数解的和是:-2-1+0=-3.故答案为:-3.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.18、1【分析】由题意得,由函数图象的对称轴为直线x=1,根据点(3,1),求得图象过另一点(−1,1),代入可得a−b+c=1.【详解】解:由题意得:抛物线对称轴为直线x=1,又图象过点(3,1),∵点(3,1)关于直线x=1对称的点为(-1,1),

则图象也过另一点(−1,1),即x=−1时,a−b+c=1.

故答案为:1.【点睛】本题主要考查图象与二次函数系数之间的关系以及二次函数的对称行,重点是确定点(3,1)关于直线x=1对称的点为(-1,1).三、解答题(共78分)19、.【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.【详解】作DH⊥AB于H,

∵∠DBC=15°,BD=20,∴,,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20、;【分析】(1)根据因式分解法即可求解;(2)根据特殊角的三角函数值即可求解.【详解】∴x-2=0或2x-6=0解得;===1.【点睛】此题主要考查一元二次方程的求解及特殊角的三角函数值的运算,解题的关键是熟知方程的解法及特殊角的三角函数值.21、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒【分析】(1)如图,过点作,垂足为点,设,则.解直角三角形即可得到结论;(2)过点作,垂足为点,解直角三角形即可得到结论.【详解】解:(1)如图,过点作,垂足为点.∵,∴.设,则.∵在Rt△ACH中,,∴.∴.解得:∴.答:计算得到的无人机的高约为19m.(2)过点F作,垂足为点.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:计算得到的无人机的平均速度约为5米/秒或26米/秒.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1)15人;(2)补图见解析.(3).【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.23、(1)证明见解析;(2)6π.【分析】(1)连接,交于,由可知,,又,四边形为平行四边形,则,由圆周角定理可知,由内角和定理可求,即可得证结论.(2)证明,将阴影部分面积问题转化为求扇形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论