辽宁省锦州市凌海市2022-2023学年数学九上期末学业水平测试试题含解析_第1页
辽宁省锦州市凌海市2022-2023学年数学九上期末学业水平测试试题含解析_第2页
辽宁省锦州市凌海市2022-2023学年数学九上期末学业水平测试试题含解析_第3页
辽宁省锦州市凌海市2022-2023学年数学九上期末学业水平测试试题含解析_第4页
辽宁省锦州市凌海市2022-2023学年数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.2.如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形3.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或34.如图,是的直径,,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:①;②;③点是的中点.其中正确的是()A.①② B.①③ C.②③ D.①②③5.已知α为锐角,且sin(α﹣10°)=,则α等于()A.70° B.60° C.50° D.30°6.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=2,则⊙O的半径为()A. B.2 C.3 D.47.下列各式运算正确的是()A. B. C. D.8.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°9.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个10.已知x1、x2是关于x的方程x2-ax-1=0的两个实数根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1x2>0 D.+>0二、填空题(每小题3分,共24分)11.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.12.已知二次函数的图象经过点,的横坐标分别为,点的位置随的变化而变化,若运动的路线与轴分别相交于点,且(为常数),则线段的长度为_________.13.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.14.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.15.若、是方程的两个实数根,且x1+x2=1-x1x2,则的值为________.16.已知二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,则b的值为_____.17.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.18.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.三、解答题(共66分)19.(10分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)20.(6分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.21.(6分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.22.(8分)一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个个球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宜”的概率为多少?(2)甲同学从中任取一球,记下汉字后放回袋中,然后再从袋中任取一球,请用画树图成列表的方法求出甲同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p甲;(3)乙同学从中任取一球,不放回,再从袋中任取一球,请求出乙同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小关系.23.(8分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.24.(8分)如图,以40m/s的速度将小球沿与地面30°角的方向击出时,小球的飞行路线是一段抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系式为h=20t-(t≥0).回答问题:(1)小球的飞行高度能否达到19.5m;(2)小球从最高点到落地需要多少时间?25.(10分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?26.(10分)如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF=,BC=9,求四边形ABED的面积.

参考答案一、选择题(每小题3分,共30分)1、C【分析】如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.2、A【解析】∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选A.3、A【分析】直接把x=2代入已知方程就得到关于m的方程,再解此方程即可.【详解】解:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣1.故选:A.【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可.4、A【分析】根据“同弧所对圆周角相等”以及“等角的余角相等”即可解决问题①,运用相似三角形的判定定理证明△EBC∽△BDC即可得到②,运用反证法来判定③即可.【详解】证明:①∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确;③∵∠ADB=90°,∴∠BDF=90°,∵DE为直径,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.故选:A.【点睛】本题考查了圆周角的性质,余角的性质,相似三角形的判定与性质,平行线的判定等知识,知识涉及比较多,但不难,熟练掌握基础的定理性质是解题的关键.5、A【分析】根据特殊角的三角函数值可得α﹣10°=60°,进而可得α的值.【详解】解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选A.【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.6、B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.7、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.8、C【分析】直接利用圆内接四边形的性质分析得出答案.【详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【点睛】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.9、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.10、A【解析】根据方程的系数结合根的判别式,可得出△=a1+4>0,进而可得出x1≠x1,此题得解.【详解】∵△=(﹣a)1﹣4×1×(﹣1)=a1+4>0,∴方程x1﹣ax﹣1=0有两个不相等的实数根,∴x1≠x1.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.二、填空题(每小题3分,共24分)11、(答案不唯一)【解析】利用二次函数的顶点式解决问题即可.【详解】由题意抛物线的顶点坐标为(3,0),设抛物线的解析式为y=a(x﹣3)1.∵开口向下,可取a=-1,∴抛物线的解析式为y=-(x﹣3)1.故答案为y=-(x﹣3)1(答案不唯一).【点睛】本题考查了抛物线与x轴的交点,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、27【分析】先求得点M和点N的纵坐标,于是得到点M和点N运动的路线与字母b的函数关系式,则点A的坐标为(0,),点B的坐标为(0,),于是可得到的长度.【详解】∵过点M、N,且即,∴,∴,,∵点A在y轴上,即,把代入,得:,∴点A的坐标为(0,),∵点B在y轴上,即,∴,把代入,得:,∴点B的坐标为(0,),∴.故答案为:.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,正确理解题意、求得点A和点B的坐标是解题的关键.13、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=-,x2=5,∴直线AC的解析式为,设P(x,),∵过点P作⊙B的切线,切点是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案为:,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.14、3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.15、1【详解】若x1,x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m;x1·x2=m2−m−1,∵x1+x2=1-x1x2,∴2m=1-(m2−m−1),解得:m1=-2,m2=1.又∵一元二次方程有实数根时,△,∴,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程的两根是,则,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=.16、【分析】根据二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b的值.【详解】∵二次函数y=x2﹣bx=(x)2,当2≤x≤5时,函数y有最小值﹣1,∴当5时,x=5时取得最小值,52﹣5b=﹣1,得:b(舍去),当25时,x时取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),当2时,x=2时取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案为:.【点睛】本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,=36-36k>2,

解得k<1.

故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.18、2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),

2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),

∴国内生产总值首次突破100万亿的年份是2020年,

故答案为:2020.【点睛】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.三、解答题(共66分)19、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:123451﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2(2,1)﹣﹣﹣(2,3)(2,4)(2,5)3(3,1)(3,2)﹣﹣﹣(3,4)(3,5)4(4,1)(4,2)(4,3)﹣﹣﹣(4,5)5(5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)见解析;(2)【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵点D在⊙O上∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠ADB=90°,∵AD平分∠BAC,∴∠BAD=∠DAE,在△ABD和△ADE中,,∴△ABD∽△ADE,∴,∵BD=3,AD=4,AB==5∴DE==.【点睛】本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.21、1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出进而求出ON,在Rt△CON中,根据勾股定理求出根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,∴ON=MN﹣OM=3,在Rt△CON中,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出辅助线,构造直角三角形是解题的关键.22、(1);(2);(3).【分析】(1)由一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案.【详解】解:(1)从中任取一个球,球上的汉字刚好是“宜”的概率为;(2)列表如下:魅力宜昌魅(魅,魅)(力,魅)(宜,魅)(昌,魅)力(魅,力)(力,力)(宜,力)(昌,力)宜(魅,宜)(力,宜)(宜,宜)(昌,宜)昌(魅,昌)(力,昌)(宜,昌)(昌,昌)所有等可能结果有16种,其中取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率;(3)列表如下:魅力宜昌魅﹣﹣﹣(力,魅)(宜,魅)(昌,魅)力(魅,力)﹣﹣﹣(宜,力)(昌,力)宜(魅,宜)(力,宜)﹣﹣﹣(昌,宜)昌(魅,昌)(力,昌)(宜,昌)﹣﹣﹣所有等可能的情况有12种,取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率,所以.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)抛物线的解析式为;(2)抛物线存在点M,点M的坐标或或或【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)①当点M在x轴上方时,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,当△ANM∽△ACB时,∠CAB=∠MAN,此时点M与点C重合,M(0,2).当△ANM∽△BCA时,∠MAN=∠ABC,此时M与C关于抛物线的对称轴对称,M(﹣3,2).②当点M在x轴下方时,当△ANM∽△ACB时,∠CAB=∠MAN,此时直线AM的解析式为y=﹣x﹣2,由,解得或,∴M(2,﹣3),当△ANM′∽△BCA时,∠MAN=∠ABC,此时AM′∥BC,∴直线AM′的解析式为y=﹣2x﹣8,由,解得或,∴M(5,﹣18)综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.24、(1)19.5m;(2)2s【分析】(1)根据抛物线解析式,先求出抛物线的定点,判断小球最高飞行高度,从而判断能否达到19.5m;(2)根据定点坐标知道,小球飞从地面飞行至最高点需要2s,根据二次函数的对称性,可知从最高落在地面,也需要2s.【详解】(1)h=20t-由二次函数可知:抛物线开口向下,且顶点坐标为(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论