




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,若点P在反比例函数y=(k≠0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,若矩形PMON的面积为6,则k的值是()A.-3 B.3 C.-6 D.62.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.903.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15° B.20° C.25° D.30°4.如图,在平面直角坐标系内,四边形ABCD为菱形,点A,B的坐标分别为(﹣2,0),(0,﹣1),点C,D分别在坐标轴上,则菱形ABCD的周长等于()A. B.4 C.4 D.205.如图,五边形内接于,若,则的度数是()A. B. C. D.6.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<07.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是()cm1.A.π B.3π C.9π D.6π8.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.49.二次函数经过平移后得到二次函数,则平移方法可为()A.向左平移1个单位,向上平移1个单位B.向左平移1个单位,向下平移1个单位C.向右平移1个单位,向下平移1个单位D.向右平移1个单位,向上平移1个单位10.已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣411.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(
)A.15
B.12
C.9
D.612.抛物线的顶点坐标是()A.(0,-1) B.(-1,1) C.(-1,0) D.(1,0)二、填空题(每题4分,共24分)13.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?14.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.15.已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.16.若是关于x的一元二次方程的解,则代数式的值是________.17.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.18.如图,在矩形中,在上,在矩形的内部作正方形.当,时,若直线将矩形的面积分成两部分,则的长为________.三、解答题(共78分)19.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.20.(8分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线y=﹣2x2+bx+c过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D,抛物线的顶点为M,其对称轴交AB于点N.(1)求抛物线的表达式及点M、N的坐标;(2)是否存在点P,使四边形MNPD为平行四边形?若存在求出点P的坐标,若不存在,请说明理由.21.(8分)如图,为了测量上坡上一棵树的高度,小明在点利用测角仪测得树顶的仰角为,然后他沿着正对树的方向前进到达点处,此时测得树顶和树底的仰角分别是和.设,且垂足为.求树的高度(结果精确到,).22.(10分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.23.(10分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.24.(10分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?25.(12分)如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°(2)若NC=3,BC=,求DM的长26.在△ABC中,∠ACB=90°,BC=kAC,点D在AC上,连接BD.(1)如图1,当k=1时,BD的延长线垂直于AE,垂足为E,延长BC、AE交于点F.求证:CD=CF;(2)过点C作CG⊥BD,垂足为G,连接AG并延长交BC于点H.①如图2,若CH=CD,探究线段AG与GH的数量关系(用含k的代数式表示),并证明;②如图3,若点D是AC的中点,直接写出cos∠CGH的值(用含k的代数式表示).
参考答案一、选择题(每题4分,共48分)1、C【解析】设PN=a,PM=b,则ab=6,∵P点在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故选C.2、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.3、C【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴∠AOF=90°+40°=130°,OA=OF,
∴∠OFA=(180°-130°)÷2=25°.
故选C.4、C【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴,∴菱形ABCD的周长等于4AB=4.故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.5、B【分析】利用圆内接四边形对角互补得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形内角和求出∠ADC+∠ACD=180°-∠CAD,从而使问题得解.【详解】解:由题意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵∴∠ADC+∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=故选:B【点睛】本题考查圆内接四边形对角互补和三角形内角和定理,掌握性质正确推理计算是本题的解题关键.6、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.7、D【解析】试题分析:扇形面积的计算公式为:,故选择D.8、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.9、D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x加减(左加右减),上下平移y加减(下加上减),据此便能得出答案.【详解】由得平移方法可为向右平移1个单位,向上平移1个单位故答案为:D.【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.10、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于的一元一次方程,解方程即可得出结论.【详解】解:∵方程有两个相等的实数根,∴,解得:.故选A.【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于的一元一次方程是解题的关键.11、A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A12、C【解析】用配方法将抛物线的一般式转化为顶点式,可确定顶点坐标.解答:解:∵y=x2+2x+1=(x+1)2,∴抛物线顶点坐标为(-1,0),故选C.二、填空题(每题4分,共24分)13、20%【分析】设这两个月的产值平均月增长的百分率为x,根据该工厂1月份及3月份的产值,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两个月的产值平均月增长的百分率为x,依题意,得:50000(1+x)2=72000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:这两个月的产值平均月增长的百分率是20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.14、【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为:则r1=a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.15、-1【详解】解:如果一点为线段的黄金分割点,那么被分割的较短的边比较大的边等于较大的边比上这一线段的长=≈0.618.∵AB=2,AP﹥BP,∴AP:AB=×2=-1.故答案是:-116、1【分析】把x=2代入已知方程求得2a+b的值,然后将其整体代入所求的代数式并求值即可.【详解】解:∵关于x的一元二次方程的解是x=2,∴4a+2b-8=0,则2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【点睛】本题考查了一元二次方程的解定义,以及求代数式的值,解题时,利用了“整体代入”的数学思想.17、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.18、或【分析】分二种情形分别求解:①如图1中,延长交于,当时,直线将矩形的面积分成两部分.②如图2中,延长交于交的延长线于,当时,直线将矩形的面积分成两部分.【详解】解:如图1中,设直线交于,当时,直线将矩形的面积分成两部分.,,,.如图2中,设直线长交于交的延长线于,当时,直线将矩形的面积分成两部分,易证∴,,,,.综上所述,满足条件的的值为或.故答案为:或.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.三、解答题(共78分)19、(1)60;(2)54°;(3)1500户;(4)见解析,.【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为54°(3)(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中的结果有8种∴P(选中)=.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.20、(1)y=﹣2x2+2x+4,M,N,(2)存在,P.【分析】(1)先由直线解析式求出A,B的坐标,再利用待定系数法可求出抛物线解析式,可进一步化为顶点式即可写出顶点M的坐标并求出点N坐标;(2)先求出MN的长度,设点P的坐标为(m,﹣2m+4),用含m的代数式表示点D坐标,并表示出PD的长度,当PD=MN时,列出关于m的方程,即可求出点P的坐标.【详解】(1)∵直线y=﹣2x+4分别交x轴,y轴于点A,B,∴A(2,0),B(0,4),把点A(2,0),B(0,4)代入y=﹣2x2+bx+c,得,解得,,∴抛物线的解析式为:y=﹣2x2+2x+4=﹣2(x﹣)2+,∴顶点M的坐标为(,),当x=时,y=﹣2×+4=3,则点N坐标为(,3);(2)存在点P,理由如下:MN=﹣3=,设点P的坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∵PD∥MN,∴当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,解得,m1=,m2=(舍去),∴此时P点坐标为(,1).【点睛】本题考查了待定系数法求二次函数解析式,平行四边形的存在性等,解题关键是要熟练掌握平行四边形的性质并能够灵活运用.21、15.7米【分析】设,在Rt△BCQ中可得,然后在Rt△PBC中得,进而得到PQ=,,然后利用建立方程即可求出,得到PQ的高度.【详解】解:设,∵在Rt△BCQ中,,∴又∵在Rt△PBC中,,∴∴,又∵,∴∵∴,解得:∴【点睛】本题考查了解直角三角形的应用,熟练利用三角函数解直角三角形是解题的关键.22、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.23、(1)50;(2)答案见解析;(3)115.2°;(4).【分析】(1)根据统计图数据,直接求解,即可;(2)先求出足球项目和其他项目的人数,再补全条形统计图,即可;(3)由“乒乓球”部分所对应的圆心角度数=360°×“乒乓球”部分所占的百分比,即可求解;(4)先画出树状图,再根据概率公式,即可得到答案.【详解】(1)由题意得:该班的总人数=15÷30%=50(名),故答案为:50;(2)足球项目的人数=50×18%=9(名),其它项目的人数=50﹣15﹣9﹣16=10(名),补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°115.2°.故答案为:115.2°;(4)画树状图如图:由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴P(恰好选出一男一女).【点睛】本题主要考查扇形统计图和条形统计图以及概率,掌握扇形统计图和条形统计图的特征以及画树状图,是解题的关键.24、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.25、(1)见解析;(2)DM=1.【分析】(1)只要证明OC平分∠ACD,即可解决问题;(2)由切线长定理可知:AM=AE,DM=DN,CN=CE=3,设DM=DN=x,在Rt△BDC中,根据,构建方程即可解决问题.【详解】(1)证明:连接OM,ON,过O点做OE⊥AC,交AC于E,如图所示,∵⊙O与AB相切于点M,与CD相切于点N∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,OM⊥AB∴OM=OE即:E为⊙O的切点;∴OE=ON,又∵OE⊥AC,ON⊥CD∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全标识标准手册
- 2025建筑工程临时用工合同
- 体育场馆无线网络覆盖安装考核试卷
- 港口运输与物流链管理考核试卷
- 2024年09月广西来宾市武宣县思灵镇卫生院招聘编外聘用人员拟聘用人员(831)笔试历年专业考点(难、易错点)附带答案详解
- 高血压防治知识
- 2024年09月广东惠来县事业单位招聘医疗岗142人笔试历年专业考点(难、易错点)附带答案详解
- 生产区域责任划分定置管理划线标准
- 礼仪用品企业流程再造考核试卷
- 生物质燃气与石化工业的协同发展考核试卷
- 企业资金预算管理办法
- (正式版)SH∕T 3507-2024 石油化工钢结构工程施工及验收规范
- 山东省临沂市莒南县2023-2024学年七年级下学期期末数学试题
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 重庆市两江新区2023-2024学年七年级下学期期末考试语文试题
- 食材配送投标方案技术标
- 思念女声三部合唱简谱
- 福建省厦门市第一中学2022-2023学年八下期中考试数学试卷(解析版)
- SGT756变压器技术说明书
- 充电桩采购安装投标方案
- 国际标准《风险管理指南》(ISO31000)的中文版
评论
0/150
提交评论