版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点,都在直线上,则与的大小关系是()A. B. C. D.不能确定2.下列长度的三条线段,能组成三角形的是()A.3、1、4 B.3、5、9 C.5、6、7 D.3、6、103.下列命题中,属于真命题的是()A.三角形的一个外角大于内角 B.两条直线被第三条直线所截,同位角相等C.无理数与数轴上的点是一一对应的 D.对顶角相等4.如图为一次函数和在同一坐标系中的图象,则的解中()A., B.,C., D.,5.如图,,点是内的一定点,点分别在上移动,当的周长最小时,的值为()A. B. C. D.6.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm7.如图,矩形的对角线与相交于点,,则等于()A.5 B.4 C.3.5 D.38.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A.2a B.2b C. D.9.下列句子中,不是命题的是()A.三角形的内角和等于180度 B.对顶角相等C.过一点作已知直线的垂线 D.两点确定一条直线10.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有()个.A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.把多项式分解因式的结果为__________________.12.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.13.如图,等边的边长为,则点的坐标为__________.14.在平行四边形中,,,,那么的取值范围是______.15.某学校八年级班学生准备在植树节义务植树棵,原计划每小时植树棵,实际每小时植树的棵数是原计划的倍,那么实际比原计划提前了__________小时完成任务.(用含的代数式表示).16.在Rt△ABC中,∠A=90°,∠C=60°,点P是直线AB上不同于A、B的一点,且PC=4,∠ACP=30°,则PB的长为_____.17.如图,已知,若以“SAS”为依据判定≌,还需添加的一个直接条件是______.18.a,b,c为ΔABC的三边,化简|a-b-c|-|a+b-c|+2a结果是____.三、解答题(共66分)19.(10分)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、BE.(1)请你找出图中其他的全等三角形;(2)试证明CF=EF.20.(6分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.21.(6分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.22.(8分)如图,已知,,.求证:.23.(8分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?24.(8分)如图,在△ABC中,∠ABC15°,AB,BC2,以AB为直角边向外作等腰直角△BAD,且∠BAD=90°;以BC为斜边向外作等腰直角△BEC,连接DE.(1)按要求补全图形;(2)求DE长;(3)直接写出△ABC的面积.25.(10分)某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n(单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.26.(10分)已知,如图,,E是AB的中点,,求证:.
参考答案一、选择题(每小题3分,共30分)1、B【分析】把y1,y2求出即可比较.【详解】∵点,都在直线上,∴y1=-5×4+4=-16,y2=-5×(-5)+4=29∴故选B.【点睛】此题主要考查一次函数的函数值,解题的关键是熟知一次函数上点的含义.2、C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;
B、3+5=8<9,不能组成三角形;
C、5+6=11>7,能够组成三角形;
D、3+6=9<10,不能组成三角形.
故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3、D【分析】根据三角形外角性质、平行线的性质、无理数和对顶角进行判断即可.【详解】解:A、三角形的一个外角大于与它不相邻的内角,原命题是假命题,不符合题意;
B、两条平行线被第三条直线所截,同位角相等,原命题是假命题,不符合题意;
C、实数与数轴上的点是一一对应的,原命题是假命题,不符合题意;
D、对顶角相等,是真命题,符合题意;
故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4、A【分析】方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.【详解】方程组的解就是一次函数y1=ax+b和y2=bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.5、D【分析】过P点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P点作OB的对称点,过P作OA的对称点,连接,交点为M,N,则此时PMN的周长最小,且△和△为等腰三角形.此时∠=180°-α;设∠NPM=x°,则180°-x°=2(∠-x°)所以x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.6、D【解析】首先根据题意画出图形,利用勾股定理计算出AC的长.【详解】根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC==15(cm),则这只铅笔的长度大于15cm.故选D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.7、B【解析】试题解析:∵四边形ABCD是矩形,∴AC=BD=2AB=8,故选B.点睛:平行四边形的对角线互相平分.8、B【解析】利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.【详解】,,,,,,,故选B.【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.9、C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.10、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可.【详解】解:作矩形的两条对称轴l1和l2,交于点P1,根据对称性可知此时P1满足题意;分别以A、B为圆心,以AB的长为半径作弧,交l1于点P2、P3;分别以A、D为圆心,以AD的长为半径作弧,交l2于点P4、P1.根据对称性质可得P1、P2、P3、P4、P1均符合题意这样的点P共有1个故选C.【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】先提取公因式,再根据完全平方公式分解.【详解】解:.故答案为:.【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题关键.12、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.13、【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,∴OD=AD=OA=×2=,在Rt△BDO中,由勾股定理得:BD=,∴点B的坐标为(,3),故答案为:(,3).【点睛】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键.14、2<a<8.【分析】根据平行四边形性质求出OD,OA,再根据三角形三边关系求出a的取值范围.【详解】因为平行四边形中,,,所以,所以6-4<AD<6+2,即2<a<8.故答案为:2<a<8.【点睛】考核知识点:平行四边形性质.理解平行四边形对角线互相平分是关键.15、【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要小时,实际需要小时,
故提前的时间为,
则实际比原计划提前了小时完成任务.故答案为:.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.16、1或2【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB,∴∠PCB=∠B=30°,∴PB=PC=1.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=1,∴BP'=2P'C=2.故答案为:1或2.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、AB=BC【解析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,
∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,
故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.18、2c【分析】根据三角形三边关系,确定a-b-c,a+b-c的正负,然后去绝对值,最后化简即可.【详解】解:∵a,b,c为ΔABC的三边∴a-b-c=a-(b+c)<0,a+b-c=(a+b)-c>0∴|a-b-c|-|a+b-c|+2a=-(a-b-c)-(a+b-c)+2a=b+c-a-a-b+c+2a=2c【点睛】本题考查了三角形三边关系的应用,解答的关键在于应用三角形的三边关系判定a-b-c,a+b-c的正负.三、解答题(共66分)19、(1)图中其它的全等三角形为:①△ACD≌△AEB,②△DCF≌△BEF;(2)证明过程见解析;【分析】(1)图中除了已知的Rt△ABC≌Rt△ADE,还有①△ACD与△AEB,②△DCF与△BEF,根据全等三角形的性质可得AC=AE,AB=AD,∠BAC=∠DAE,进一步即可根据SAS判断①中两个三角形应是全等关系,然后根据这两对全等三角形的性质即可判断②中两个三角形的关系,问题从而解决;(2)根据全等三角形的性质和SAS可证△CAD≌△EAB,然后根据全等三角形的性质可得∠ACB=∠AED,∠ACD=∠AEB,CD=BE,再利用AAS即可证明△CDF≌△EBF,进一步即可推出结论.【详解】解:(1)图中其它的全等三角形为:①△ACD≌△AEB,②△DCF≌△BEF;①∵Rt△ABC≌Rt△ADE,∴AC=AE,AB=AD,∠BAC=∠DAE,∵∠BAC﹣∠BAD=∠DAE﹣∠BAD,∴∠DAC=∠BAE,在△ADC和△ABE中,∵AC=AE,AD=AB,∠DAC=∠BAE,∴△ADC≌△ABE(SAS);②∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS).(2)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB(SAS),∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS)∴CF=EF.【点睛】本题主要考查了全等三角形的判定和性质,属于常考题型,灵活应用全等三角形的判定和性质是解题的关键.20、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;
(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【点睛】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21、(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22、证明见解析.【分析】根据题意证明即可求解.【详解】证明:∵∴,即:在和中∴∴【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.23、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,然后根据图像可求出函数解析式,进而联立两个函数关系求解;(3)由(2)及题意可分类进行求解,即当乙车追上甲车前和当乙车追上甲车后.【详解】解:(1)由图像可得:甲车的图像是从原点出发,而乙车的图像经过点,则:所以乙车比甲车晚出发1小时;答:乙车比甲车晚出发1小时.(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,;设乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,,,解得,(小时).答:乙车出发1.5小时后追上甲车.(3)由(2)可得:甲车函数解析式为,乙车的函数解析式为,当乙车追上甲车前两车相距20千米时,,解得;当乙车追上甲车后两车相距20千米时,,解得;2-1=1(小时)或3-1=2(小时);在乙车行驶过程中,当t为1或2时,两车相距20千米.【点睛】本题主要考查一次函数的实际应用,熟练掌握一次函数的实际应用是解题的关键.24、(1)见解析;(2);(3)【分析】(1)根据题意描述绘图即可.(2)连接DC,先证明△BCD是等边三角形,再证明DE垂直平分BC.由勾股定理求出DF和EF的长度,DE=DF+EF.(3)可以证明△ABC≌△DAC,用△DBC的面积减去△ABD的面积除以2即可得到△ABC的面积.【详解】解:(1)如图所示(2)连接DC解:∵△ABD是等腰直角三角形,AB=,∠BAD=90°.∴AB=AD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中历史第二单元工业文明的崛起和对中国的冲击第11课民国时期民族工业的曲折发展学案含解析岳麓版必修2
- 水利工程EPC项目合同
- 人力资源管理博士教师聘用合同
- 建筑安防系统监理合同协议
- 建筑装饰合同管理要点
- 租赁消防车辆合同
- 知识产权合同招标管理办法
- 舞厅墙地砖铺设合同
- 员工协商解除劳动合同
- 区块链合同填写要点
- 《春节的文化与习俗》课件
- 手机棋牌平台网络游戏商业计划书
- 学校体育与社区体育融合发展的研究
- 医疗机构高警示药品风险管理规范(2023版)
- 一年级体质健康数据
- 八年级物理(上)期中考试分析与教学反思
- 国家开放大学《财政与金融(农)》形考任务1-4参考答案
- 2023银行网点年度工作总结
- 工厂反骚扰虐待强迫歧视政策
- 计算机教室(微机室)学生上机使用记录
- FAI首件检验报告
评论
0/150
提交评论