湖南省武汉市常青第一学校2022年数学八年级第一学期期末教学质量检测试题含解析_第1页
湖南省武汉市常青第一学校2022年数学八年级第一学期期末教学质量检测试题含解析_第2页
湖南省武汉市常青第一学校2022年数学八年级第一学期期末教学质量检测试题含解析_第3页
湖南省武汉市常青第一学校2022年数学八年级第一学期期末教学质量检测试题含解析_第4页
湖南省武汉市常青第一学校2022年数学八年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A. B.C. D.2.4的平方根是()A.2 B.16 C.±2 D.±3.下列四个互联网公司logo中,是轴对称图形的是()A. B. C. D.4.已知实数a、b满足等式x=a2+b2+20,y=a(2b-a),则x、y的大小关系是().A.x≤y B.x≥y C.x<y D.x>y5.边长为,的长方形,它的周长为,面积为,则的值为()A. B. C. D.6.已知一次函数,图象与轴、轴交点、点,得出下列说法:①A,;②、两点的距离为5;③的面积是2;④当时,;其中正确的有()A.1个 B.2个 C.3个 D.4个7.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)8.下列因式分解中:①;②;③;④;正确的个数为()A.个 B.个 C.个 D.个9.等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长10.若分式的值为零,则x=()A.3 B.-3 C.±3 D.0二、填空题(每小题3分,共24分)11.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).12.等腰三角形的一个外角是140,则其底角是13.若分式的值是0,则x的值为________.14.若二元一次方程组的解是则一次函数的图象与一次函数的图象的交点坐标为________.15.若|3x+2y+1|+=0,则x﹣y=_____16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B的坐标为(1,﹣2),那么棋子C的坐标是_____.17.若关于的方程有解,则的取值范围是______.18.若关于x的方程=0有增根,则m的值是______.三、解答题(共66分)19.(10分)某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.20.(6分)如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA表示货车离开甲地的距离y(km)与时间x(h)之间的函数关系;折线BCD表示轿车离开甲地的距离y(km)与时间x(h)之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距km,轿车比货车晚出发h;(2)求线段CD所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?21.(6分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.22.(8分)某业主贷款6.6万元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其它费用是售价的10%.若每个月能生产、销售6000个产品,问至少几个月后能赚回这台机器的贷款?(用列不等式的方法解决)23.(8分)如图,点是上一点,交于点,,;求证:.24.(8分)为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?25.(10分)如图,△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别于AB,AC交于点D,E,求∠BCD的度数.26.(10分)按要求完成下列各题(1)计算:(2)因式分解:(3)解方程:(4)先化简,再求值:,其中.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用勾股定理的逆定理逐项判断即可.【详解】解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、C【分析】根据平方根的概念:如果一个数x的平方等于a,即,那么这个数x叫做a的平方根,即可得出答案.【详解】,∴4的平方根是,故选:C.【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.3、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【分析】判断x、y的大小关系,把进行整理,判断结果的符号可得x、y的大小关系.【详解】解:+20,

,,,

,故选:D.【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.5、B【分析】先把所给式子提取公因式mn,再整理为与题意相关的式子,代入求值即可.【详解】根据题意得:m+n=7,mn=10,∴.故选:B.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.6、B【分析】①根据坐标轴上点的坐标特点即得;②根据两点之间距离公式求解即得;③先根据坐标求出与,再计算面积即可;④先将转化为不等式,再求解即可.【详解】∵在一次函数中,当时∴A∵在一次函数中,当时∴∴①正确;∴两点的距离为∴②是错的;∵,,∴∴③是错的;∵当时,∴,∴④是正确的;∴说法①和④是正确∴正确的有2个故选:B.【点睛】本题主要考查了一次函数与坐标轴的交点、两点距离公式及一次函数与不等式的关系,熟练掌握坐标轴上点的坐标特点及一次函数与不等式的相互转化是解题关键.7、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.8、C【分析】根据因式分解的方法逐个判断即可.【详解】解:①,故①错误;②,故②错误;③,正确,④,故④错误,所以正确的只有③,故答案为:C.【点睛】本题考查了判断因式分解是否正确,掌握因式分解的方法是解题的关键.9、C【解析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,

∴∠ABC=∠ACB=72°,

由作图痕迹发现BD平分∠ABC,

∴∠A=∠ABD=∠DBC=36°,

∴AD=BD,故A、B正确;

∵AD≠CD,

∴S△ABD=S△BCD错误,故C错误;

△BCD的周长=BC+CD+BD=BC+AC=BC+AB,

故D正确.

故选C.【点睛】本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.10、B【分析】根据题意分式的值等于1时,分子就等于1且分母不为1.即可求出答案.【详解】解:∵分式的值为零,∴,且,∴,且,∴;故选:B.【点睛】考查了分式的值为零的条件,分式的值的由分子分母共同决定,熟记分式的值为1是解题的关键.二、填空题(每小题3分,共24分)11、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.12、70°或40°【解析】解:当140°外角为顶角的外角时,则其顶角为:40°,则其底角为:(180°-40°)÷2=70°,当140°外角为底角的外角时,则其底角为:180°﹣140°=40°.故答案为70°或40°.点睛:本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.13、3【分析】根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.14、(2,7).【解析】根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数与的图象的交点坐标.【详解】解:若二元一次方程组的解是,则一次函数的图象与一次函数的图象的交点坐标为(2,7).故答案为:(2,7).【点睛】本题考查一次函数与二元一次方程组.理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.15、﹣1【分析】根据绝对值和算术平方根的非负性得到方程组,解方程组后即可得到答案.【详解】解:∵|3x+2y+1|+=0,∴,解得,∴x﹣y=﹣11﹣16=﹣1.故答案为:﹣1.【点睛】此题考查绝对值和算术平方根的非负性,根据非负性得到方程组是解题的关键.16、(2,1)【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.17、m≠1【分析】把分式方程化简后得,根据关于的方程有解,则方程的根使得分式方程有意义,即,则,答案可解.【详解】解:方程两边同时乘()得:,

解得:,

∵关于的方程有解,

∴,即,

∴,即,故答案为:.【点睛】本题考查了分式方程的解,解题的关键是注意分母不为0这个条件.18、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.三、解答题(共66分)19、(1)15≤x<40且x为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元。【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;

(2)列出不等式组,求出自变量x的取值范围,利用函数的性质即可解决问题;【详解】解:(1)y=680x+580(40-x)=100x+23200由53x+45(40-x)≥1920解得x≥15,∵x<40且x为整数,∴15≤x<40且x为整数(2)由题意得:100x+23200≤25200,解得x≤20,由(1)15≤x<40且x为整数∴15≤x≤20且x为整数,故有6种方案∵100>0,∴y随x的增大而增大,∴当x=15时,y最小值=100×15+23200=24700(元)答:若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.20、(1)300;1.2(2)y=110x﹣195(3)3.9;234千米【分析】(1)由图象可求解;

(2)利用待定系数法求解析式;

(3)求出OA解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km,轿车比货车晚出发1.2小时;故答案为:300;1.2;(2)设线段CD所在直线的函数表达式为:y=kx+b,由题意可得:解得:∴线段CD所在直线的函数表达式为:y=110x﹣195;(3)设OA解析式为:y=mx,由题意可得:300=5m,∴m=60,∴OA解析式为:y=60x,∴∴答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.21、(1)见解析(2)2【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案:【详解】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线.∵BC=6,BC边上的高为1,∴DE=3,DD′=1.∴.∴△PDE周长的最小值为:DE+D′E=3+5=2.22、至少5个月后该业主能赚回这台机器的贷款.【分析】设需要个月能赚回这台机器的贷款,根据题意列出不等式求解即可.【详解】解:设需要个月能赚回这台机器的贷款,根据题意,得,解得:,答:至少5个月后该业主能赚回这台机器的贷款.【点睛】本题是对不等式知识的考查,准确根据题意列出不等式是解决本题的关键.23、见解析【分析】先根据得到,再证明△AED≌△CEF即可得证.【详解】证明:∵,∴,在△AED和△CEF中,

∵,∴△AED≌△CEF,∴.【点睛】本题考查三角形全等的证明,熟知三角形全等的判定方法是解题的关键.24、(1)原来每小时处理污水量是40m2;(2)需要16小时.【解析】试题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论