版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,∠MCN=42°,点P在∠MCN内部,PA⊥CM,PB⊥CN,垂足分别为A、B,PA=PB,则∠MCP的度数为().A.21° B.24° C.42° D.48°2.下列运算正确的是()A. B.C. D.3.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.如图,在中,,于点,,,则的度数为()A. B. C. D.5.如图,将直尺与含角的三角尺摆放在一起,若,则的度数是()A. B. C. D.6.下列各组数中,是方程的解的是()A. B. C. D.7.将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是()A. B. C. D.8.下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F9.分式的值为0,则A.x=-2 B.x=±2 C.x=2 D.x=010.在中,,若,,则AB等于A.2 B.3 C.4 D.二、填空题(每小题3分,共24分)11.点P(4,5)关于x轴对称的点的坐标是___________.12.有6个实数:,,,,,,其中所有无理数的和为______.13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,动点P从点B出发沿射线BC方向以2cm/s的速度运动.设运动的时间为t秒,则当t=_____秒时,△ABP为直角三角形.14.点(3,)关于轴的对称点的坐标是__________.15.如图,在平面直角坐标系xOy中,点B(﹣1,3),点A(﹣5,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为_____.16.克盐溶解在克水中,取这种盐水克,其中含盐__________克.17.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.18.若,则_______.三、解答题(共66分)19.(10分)解:20.(6分)如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.21.(6分)化简(1)(2)22.(8分)如图,为等边三角形,为上的一个动点,为延长线上一点,且.(1)当是的中点时,求证:.(2)如图1,若点在边上,猜想线段与之间的关系,并说明理由.(3)如图2,若点在的延长线上,(1)中的结论是否仍然成立,请说明理由.23.(8分)(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.”班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?24.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?25.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?26.(10分)计算:(1)()+()(2)
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据角平分线的判定可知CP平分∠MCN,然后根据角平分线的定义即可求出结论.【详解】解:∵PA⊥CM,PB⊥CN,PA=PB,∴CP平分∠MCN∵∠MCN=42°,∴∠MCP=∠MCN=21°故选A.【点睛】此题考查的是角平分线的判定,掌握角平分线的判定定理是解决此题的关键.2、D【解析】解:A.(2)2=12,故A错误;B.=,故B错误;C.=5,故C错误;D.=,故D正确.故选D.3、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.4、D【分析】根据角平分线的判定可知,BD平分∠ABC,根据已知条件可求出∠A的度数.【详解】解:∵,,且∴是的角平分线,∴,∴,∴在中,,故答案选D.【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键.5、C【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,
∴∠BEF=∠1+∠F=55°,
∵AB∥CD,
∴∠2=∠BEF=55°,
故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质,此题难度不大.6、B【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【详解】解:A.,故错误;B.,故正确;C.,故错误;D.,故错误.故选:B.【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.7、C【分析】根据平面直角坐标系中,点的平移与点的坐标之间的关系,即可得到答案.【详解】∵点向左平移3个长度单位,再向上平移2个长度单位得到点,∴点的坐标是(-5,-1),故选C.【点睛】本题主要考查平面直角坐标系中,点的平移与点的坐标之间的关系,掌握点的平移与点的坐标之间的关系,是解题的关键.8、C【分析】根据全等三角形的判定方法,对每个选项逐一判断即可得出答案.【详解】A.两条边对应相等,且两条边的夹角也对应相等的两个三角形全等,即当AB=DE,BC=EF时,两条边的夹角应为∠B=∠E,故A选项不能判定△ABC≌△DEF;B.两个角对应相等,且两个角夹的边也对应相等的两个三角形全等,即当∠A=∠D,∠C=∠F时,两个角夹的边应为AC=DF,故B选项不能判定△ABC≌△DEF;.C.由AB=DE,BC=EF,△ABC的周长=△DEF的周长,可知AC=DF,即三边对应相等的两个三角形全等,故C选项能判定△ABC≌△DEF;.D.三角对应相等的两个三角形不一定全等,故D选项不能判定△ABC≌△DEF.故选C.【点睛】本题考查了全等三角形的判定方法.熟练掌握全等三角形的判定方法是解题的关键.9、C【分析】根据分式的值为0,分子等于0,分母不等于0解答.【详解】根据分式的值为0的条件,要使,则有即解得.故选C.【点睛】本题考查分式的值为0,分子等于0,分母不等于0,熟记概念是关键.10、C【解析】利用勾股定理计算即可.【详解】解:在中,,,,,故选:C.【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.二、填空题(每小题3分,共24分)11、(4,-5)【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而得出答案.【详解】点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故答案为:(4,﹣5).【点睛】本题考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解答本题的关键.12、【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,,,∴==故答案为:.【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.13、3或1【分析】分两种情况讨论:①当∠APB为直角时,点P与点C重合,根据可得;②当∠BAP为直角时,利用勾股定理即可求解.【详解】∵∠C=90°,AB=1cm,∠B=30°,∴AC=2cm,BC=6cm.①当∠APB为直角时,点P与点C重合,BP=BC=6cm,∴t=6÷2=3s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,在Rt△ACP中,AP2=(2)2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(1)2+[(2)2+(2t﹣6)2]=(2t)2,解得t=1s.综上,当t=3s或1s时,△ABP为直角三角形.故答案为:3或1.【点睛】本题考查了三角形的动点问题,掌握以及勾股定理是解题的关键.14、(3,2)【解析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而求出即可.【详解】点(3,﹣2)关于x轴的对称点坐标是(3,2).故答案为(3,2).【点睛】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.15、(﹣2,﹣4)【分析】将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可【详解】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.设直线PB的解析式为y=kx+b,把B(﹣1,3),K(﹣,﹣)代入得,解得∵直线BK的解析式为y=7x+10,由,解得,∴点P坐标为(﹣2,﹣4),故答案为(﹣2,﹣4).【点睛】本题考查利用一次函数图像的几何变换求解交点的问题,解题的关键是要充分利用特殊角度45°角进行几何变换,求解直线BP的解析式.16、【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【详解】解:该盐水的浓度为:,故这种盐水m千克,则其中含盐为:m×=克.故答案为:.【点睛】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.17、4或6【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.18、或【分析】用含k的式子分别表示出,,,然后相加整理得到一个等式,对等式进行分析可得到k的值.【详解】解:,,,,,或,当时,,当时,,所以,或.故答案为:或.【点睛】本题考查了分式的化简求值,解题关键在于将式子变形为.三、解答题(共66分)19、【分析】无理数的运算法则与有理数的运算法则是一样的.注意:表示a的算术平方根.在进行根式的运算时要先化简再计算可使计算简便.【详解】原式【点睛】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.20、(1)见解析;(2)60°【分析】(1)证明△CAE≌△CBD(ASA),可得出结论;(2)根据题意得出△CDE为等边三角形,进而得出∠C的度数.【详解】(1)∵AE⊥CD于点A,BD⊥CE于点B,∴∠CAE=∠CBD=90°,在△CAE和△CBD中,,∴△CAE≌△CBD(ASA).∴CD=CE;(2)连接DE,∵由(1)可得CE=CD,∵点A为CD的中点,AE⊥CD,∴CE=DE,∴CE=DE=CD,∴△CDE为等边三角形.∴∠C=60°.【点睛】此题主要考查全等三角形的判定的综合问题,解题的关键是熟知全等三角形的判定方法及等边三角形的判定定理.21、(1);(2)【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式括号中两项通分后利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式;(2)原式.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22、(1)证明见解析;(2),理由见解析;(3)成立,理由见解析.【分析】(1)根据等边三角形的性质可得,,然后根据等边对等角可得,从而求出,然后利用等角对等边即可证出,从而证出结论;(2)过点作,交于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;(3)过点作,交的延长线于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;【详解】(1)证明:∵为等边三角形,是的中点,∴,.∵,∴.∵,∴,∴,∴.(2).理由:如图,过点作,交于点.∵是等边三角形,∴也是等边三角形,∴,.∵,∴.∵,∴,∴.又∵,,∴.在和中,∴,∴,∴.(3)如图,过点作,交的延长线于点.∵是等边三角形,∴也是等边三角形,∴,.∵,∴.∵,∴,∴,在和中,∴,∴,∴.【点睛】此题考查的是等边三角形的判定及性质、全等三角形的判定及性质和平行线的性质,掌握等边三角形的判定及性质、全等三角形的判定及性质和平行线的性质是解决此题的关键.23、两种笔记本各买30本,20本【分析】分析题目中给出的条件,设两种笔记本各买x本、y本,列出方程组解答即可.【详解】解:设两种笔记本各买x本、y本,根据题意得解得答:两种笔记本各买30本,20本.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键.24、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胎记的临床护理
- 儿童学习能力障碍的健康宣教
- 《机械制造基础》课件-05篇 第八单元 超精密加工
- 《机械设计基础》课件-第5章
- 《计算机表格处理》课件
- 【培训课件】青果园 万名大学生创意创业园区项目介绍
- 《认识HS商品分类》课件
- 社区户外旅游组织计划
- 生物学课程的扩展与拓展计划
- 提升师生互动频率的计划
- 出纳优秀员工理由
- 地下工程概论-课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案
- 酒店工程装饰装修施工方案参考模板范本
- 超市便利店缺货登记表
- [QC成果]高大模板支撑系统施工质量控制
- 煤矿区队安全风险管控日分析制度办法
- (完整版)霍夫斯塔德文化差异五个维度
- 《地形对聚落及交通线路分布的影响》教学设计
- 《中国旅游地理》新课程标准
- seagull船员英语STCW甲板操作级答案
- 脑出血后遗症临床路径
评论
0/150
提交评论