版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在等腰中,,与的平分线交于点,过点做,分别交、于点、,若的周长为18,则的长是()A.8 B.9 C.10 D.122.计算的平方根为()A. B. C.4 D.3.如图,等边三角形中,,有一动点从点出发,以每秒一个单位长度的速度沿着折线运动至点,若点的运动时间记作秒,的面积记作,则与的函数关系应满足如下图象中的()A. B. C. D.4.下列长度的三条线段能组成三角形的是()A.. B..C.. D..5.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A. B. C. D.7.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF8.如图,在中,分别是的中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是()A. B. C. D.9.若是完全平方式,则的值为()A. B.10 C.5 D.10或10.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.11.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上皆不对12.如图,在的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中是一个格点三角形.则图中与成轴对称的格点三角形有()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.等腰三角形有一个外角是100°,那么它的的顶角的度数为_____________.14.若分式的值为0,则的值为______.15.若与互为相反数,则的值为________________.16.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.17.如图,函数和的图像相交于点A(m,3),则不等式的解集为____.18.已知等腰三角形的一个内角是,则它的底角是__________.三、解答题(共78分)19.(8分)计算:;20.(8分)如图,已知△ABC中,∠BAC>90°,请用尺规求作AB边上的高(保留作图痕迹,不写作法)21.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.22.(10分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=,BD=1.(1)求证:ΔBCD是直角三角形;(1)求△ABC的面积。23.(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)(1)画出关于直线对称的;并写出点、、的坐标.(2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)24.(10分)如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.25.(12分)已知,如图,为等边三角形,点在边上,点在边上,并且和相交于点于.(1)求证:;(2)求的度数;(3)若,,则______.26.如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,由此即可解决问题;【详解】解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,CE=OE,∴△ADE的周长是:AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=18,∴AB=AC=1.故选:B.【点睛】本题考查等腰三角形的性质和判定,平行线的性质及角平分线的性质.利用平行线和角平分线推出等腰三角形是解题的关键.2、B【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.【详解】∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2,故选B.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3、A【分析】根据等边三角形的性质结合点的运动,当P运动到B,△APC的面积即为△ABC的面积,求出即可判定图象.【详解】作CD⊥AB交AB于点D,如图所示:由题意,得当点P从A运动到B时,运动了4秒,△APC面积逐渐增大,此时,即当时,,即可判定A选项正确,B、C、D选项均不符合题意;当点P从B运动到C,△APC面积逐渐缩小,与从A运动到B时相对称,故选:A.【点睛】此题主要考查根据动点问题确定函数图象,解题关键是找出等量关系.4、C【解析】根据三角形三边之间的关系即在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边判断即可.【详解】解:A选项,不能组成三角形,A错误;B选项,不能组成三角形,B错误;C选项,经计算满足任意两边之和大于第三边,任意两边之差小于第三边,C正确;D选项,不能组成三角形,D选项错误.【点睛】本题考查了三角形三边之间的关系,灵活利用三角形三边的关系是判断能否构成三角形的关键.5、C【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.6、A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得答案.【详解】∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限;故答案为:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.7、D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.8、B【分析】利用三角形中位线定理得到,结合平行四边形的判定定理进行选择.【详解】∵在中,分别是的中点,∴是的中位线,∴.A、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.B、根据可以判定,即,由“两组对边分别平行的四边形是平行四边形”得到四边形为平行四边形,故本选项正确.C、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.D、根据不能判定四边形为平行四边形,故本选项错误.故选B.【点睛】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.9、D【分析】将写成,再利用完全平方式的特征对四个选项逐一进行判断即可得到的值.【详解】=∵是一个完全平方式,∴∴故选:D【点睛】本题考查的知识点是完全平方公式的概念,理解并掌握一次项系数具有的两种情况是解题的关键.10、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】A、不是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选A.【点睛】本题考查了轴对称图形的识别,解决本题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,据此分析即可.11、C【解析】试题解析:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.12、C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.二、填空题(每题4分,共24分)13、80°或20°【分析】根据等腰三角形的性质,已知等腰三角形有一个外角为100°,可知道三角形的一个内角.但没有明确是顶角还是底角,所以要根据情况讨论顶角的度数.【详解】等腰三角形有一个外角是100°即是已知一个角是80°,这个角可能是顶角,也可能是底角,
当是底角时,顶角是180°-80°-80°=20°,因而顶角的度数为80°或20°.
故填80°或20°.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14、1【分析】根据分式的值为0的条件和分式有意义条件得出4-x1=0且x+1≠0,再求出即可.【详解】解:∵分式的值为0,
∴4-x1=0且x+1≠0,
解得:x=1,
故答案为:1.【点睛】本题考查分式的值为零的条件和分式有意义的条件,能根据题意得出4-x1=0且x+1≠0是解题的关键.15、4【分析】根据与互为相反数可以得到+=0,再根据分式存在有意义的条件可以得到1-x≠0,x≠0,计算解答即可.【详解】∵与互为相反数∴+=0又∵1-x≠0,x≠0∴原式去分母得3x+4(1-x)=0解得x=4故答案为4【点睛】本题考查的是相反数的意义、分式存在有意义的条件和解分式方程,根据相反数的意义得到+=0是解题的关键.16、75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.17、x<-1.【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴交点坐标为A(-1,3),
由图象可知,在点A的左侧,函数的图像在的图像的上方,即∴不等式的解集为x<-1.
故答案是:x<-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.18、50°或80°.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以分两种情况讨论.【详解】(1)当80°角为底角时,其底角为80°;(2)当80°为顶角时,底角=(180°﹣80°)÷2=50°.故答案为:50°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.三、解答题(共78分)19、(1);(2)【分析】(1)先将二次根式进行化简,再合并同类二次根式;(2)利用平方差公式将展开,然后将分母有理化,再算减法即可.【详解】(1)(2)【点睛】本题考查二次根式的混合运算,熟练掌握二次根式的化简是解题的关键.20、如图所示,CD即为所求.见解析.【解析】以三角形的点C为圆心,以适当长度为半径划弧,和AB的延长线交于两点,分别以这两个交点为圆心,以大于二分之一的两交点间的距离为半径划两弧,其交点为F,连接FC即可.【详解】如图所示,CD即为所求.【点睛】本题考查的是作图,熟练掌握尺规作图是解题的关键.21、(1)证明见解析;(1)69°.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【详解】(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∵∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∵,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=41°,∴∠C=∠EDC=(180°-41°)÷1=69°,∴∠BDE=∠C=69°.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.22、(1)见解析;(1);【分析】(1)根据勾股定理的逆定理直接得出结论;
(1)设腰长为x,在直角三角形ADB中,利用勾股定理列出x的方程,求出x的值,进而利用三角形的面积公式求出答案.【详解】解:(1)∵CD=1,BC=,BD=1,
∴CD1+BD1=BC1,
∴△BDC是直角三角形;
(1)设腰长AB=AC=x,
在Rt△ADB中,
∵AB1=AD1+BD1,
∴x1=(x-1)1+11,
解得x=,
即△ABC的面积=AC•BD=××1=.【点睛】本题主要考查了勾股定理和其逆定理以及等腰三角形的性质,解题关键是利用勾股定理构造方程求出腰长.23、(1)图详见解析,A1(3,2),B1(0,1),C1(1,4);(2)点D坐标为(-1,2).【分析】(1)分别作出点A,B,C关于直线x=−1的对称的点,然后顺次连接,并写出A1,B1,C1的坐标.
(2)作出点B关于x=−1对称的点B1,连接CB1,与x=−1的交点即为点D,此时BD+CD最小,写出点D的坐标.【详解】解:所作图形如图所示:A1(3,2),B1(0,1),C1(1,4);(2)作出点B关于x=-1对称的点B1,连接CB1,与x=-1的交点即为点D,此时BD+CD最小,点D坐标为(-1,2).【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.24、(1);(2)见解析【分析】(1)根据等边三角形的性质角度运算即可得出,从而得到即可;(2)由平行可知,再由三角形的内角和运算即可得.【详解】解:(1)∵是等边三角形.∴,∵,,∴,∴.(2)∵,∴,∵,,,,∴.【点睛】本题考查了等边三角形的性质及三角形内角和,解题的关键是掌握相应的性质,并对角度进行运算.25、(1)详见解析;(2)60°;(3)1.【分析】(1)结合等边三角形的性质,利用SAS可证明,由全等三角形对应边相等的性质可得结论;(2)由全等三角形对应角相等可得,再由三角形外角的性质可得的度数;(3)结合(2)可得,由直角三角形30度角的性质可得BM长,易知BE,由(1)可知AD长.【详解】(1)证明:∵为等边三角形,∴.在和中,∴.∴.(2)如图∵,∴.∴.(3)由(2)得,由(1)得【点睛】本题是三角形的综合题,涉及的知识点有全等三角形的判定与性质、等边三角形的性质,三角形外角的性质、直角三角形30度角的性质,灵活利用全等三角形的性质是解题的关键.26、(1)AB的长为10;(2)△ADE的面积为36;(3)M点的坐标(4,-4)或(12,12)【分析】(1)利用直线AB的函数解析式求出A、B坐标,再利用勾股定理求出AB即可;(2)由折叠知∠B=∠C,∠BDA=∠CDA,由∠BAO=∠CAE证得∠AEC=∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船闸课程设计地板计算
- 中医执业医师考试-中医基础理论练习题
- 职业体验课程设计与实施
- 药物新剂型与新技术课程讲稿2
- 药店销售活动课程设计
- 群桩计算 课程设计
- 自动扫雷课程设计
- 物业管理行业采购工作总结
- 2024年秋季学期新人教版地理七年级上册课件 第三章 陆地和海洋 3.3 海陆的变迁
- 美容美发行业前台接待总结
- 反思单元 沈括的“海陆变迁”说(习题教学设计)2023-2024学年三年级上册科学(大象版 河南专用)
- 2023-2024届高考语文复习-阅读与训练主题+工匠精神(含答案)
- 装表接电培训课件
- 新苏教版五年级上册科学全册期末复习知识点(彩版)
- 部编版小学一年级上册道德与法治教学设计(第三、第四单元)
- CJJT 164-2011 盾构隧道管片质量检测技术标准
- 2023年甘肃省定西市中考政治真题 (含解析)
- 中医科诊疗指南及技术操作规范学习试题
- 胃肠减压的护理措施要点课件
- 6.2《青纱帐-甘蔗林》教学设计-【中职专用】高一语文(高教版2023·基础模块下册)
- 25王戎不取道旁李公开课一等奖创新教学设计
评论
0/150
提交评论