锅炉过热气温控制matlab及控制系统仿真_第1页
锅炉过热气温控制matlab及控制系统仿真_第2页
锅炉过热气温控制matlab及控制系统仿真_第3页
锅炉过热气温控制matlab及控制系统仿真_第4页
锅炉过热气温控制matlab及控制系统仿真_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课程设计报告装订 题目:MATLAB及控制系统仿真标程设计线II! 学 院电子信息工程学院: 学科门类电气信息类I 专 业自动化I 学号2012449107: 姓 名陈文华指导教师姜萍~2016年1月16日河北大学2012级自动化MATLAB及控制系统仿真课程设计目录TOC\o"1-5"\h\z\o"CurrentDocument"—引言 2\o"CurrentDocument"1.1实验目的 2\o"CurrentDocument"1.2实验内容与要求 2\o"CurrentDocument"1.2.1实验内容 2\o"CurrentDocument"1.2.2实验要求 2\o"CurrentDocument"二倒立摆控制系统设计 3\o"CurrentDocument"2.1倒立摆的简介 3\o"CurrentDocument"2.2倒立摆的数学模型 3\o"CurrentDocument"2.2.1本设计中所用到的各变量的取值及其意义 3\o"CurrentDocument"2.2.2动力学模型 32.3模型转化 5\o"CurrentDocument"三基于状态反馈的倒立摆系统设计 6\o"CurrentDocument"3.1系统的开环仿真 .6\o"CurrentDocument"3.1.1开环仿真的系统Simulink结构 .6\o"CurrentDocument"3.1.2开环系统的分析 .7\o"CurrentDocument"3.2输出反馈设计方法 .7\o"CurrentDocument"3.2.1输出反馈仿真 .7\o"CurrentDocument"3.2.2输出反馈系统的分析 .8\o"CurrentDocument"3.3状态反馈设计 .8\o"CurrentDocument"3.3.1基于状态反馈控制器的倒立摆设计过程 8\o"CurrentDocument"3.3.3状态反馈分析 10\o"CurrentDocument"3.4全维状态观测器的倒立摆控制系统设计与仿真 10\o"CurrentDocument"3.4.1基于全维状态观测器的倒立摆系统设计步骤 10\o"CurrentDocument"3.4.2系统仿真 10\o"CurrentDocument"3.4.3基于状态观测器的状态反馈曲线分析 11\o"CurrentDocument"四锅炉过热汽温控制系统设计及仿真 12\o"CurrentDocument"4.1蒸汽温度控制的任务 12\o"CurrentDocument"4.2影响蒸汽温度的因素 12\o"CurrentDocument"4.3蒸汽温度系统开环模型建立 12\o"CurrentDocument"4.3.1减温水量对蒸汽温度的影响 12\o"CurrentDocument"4.3.2动态特性 12\o"CurrentDocument"4.4蒸汽温度控制系统设计 12\o"CurrentDocument"4.4.1开环系统动态特性仿真及分析 12\o"CurrentDocument"4.4.2开环特性曲线分析 13\o"CurrentDocument"4.5单回路控制系统 13\o"CurrentDocument"4.5.1单回路控制系统仿真及分析 13\o"CurrentDocument"4.5.2系统PID参数的整定 13\o"CurrentDocument"4.5.3单回路控制系统仿真曲线分析 15\o"CurrentDocument"4.6串级控制系统 15\o"CurrentDocument"4.6.1串级控制系统仿真 15\o"CurrentDocument"4.6.2系统PID参数的整定 16五总结 18附录 19—引言1.1实验目的(1) 加强学生对控制理论及控制系统的理解,熟练应用计算机仿真常用算法和工具,完成控制系统计算机辅助设计的训练。(2) 提高学生对控制系统的综合及设计技能,扩大学生的知识面,培养学生独立分析问题及解决问题的能力,为以后从事实际控制系统的设计工作打下基础。1.2实验内容与要求1.2.1实验内容(1) 基于观测器的倒立摆控制系统设计及仿真(2) 锅炉过热汽温控制系统设计及仿真1.2.2实验要求(1) 系统分析及数学模型建立(2) 开环系统仿真及动态特性分析(3) 控制方案设计及闭环系统仿真实验(4) 实验结果分析二倒立摆控制系统2.1倒立摆的简介倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。由于倒立摆本身是自不稳定的系统,实验建模存在一定的困难。但是经过假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程关系。在此,我们首先应用动力学方程建立一级倒立摆的非线性数学模型;采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型;然后应用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律;最后应用状态观测器实现倒立摆系统的稳定控制。2.2倒立摆的数学模型倒立摆示意图如图2-1所示,通过对小车施加一定的驱动力,使倒立摆保持一定的位姿。图2-1倒立摆示意图2.2.1本设计中所用到的各变量的取值及其意义小车质量M;m:小球的质量;1:倒摆的杆长;g:重力加速度;0:表示倒摆偏离垂直方向的角度;u是小车受到的水平方向的驱动力;2.2.2动力学模型小球受力分析如图2-2所示,其中(%,yc)表示小球的重心坐标图2-2小球受力分析示意图通过受力分析,由牛顿第二运动定律,系统的运动满足下面的方程:TOC\o"1-5"\h\zd2 d2x轴方向:Md—x+m—x=ud2 d2小球的重心坐标满足:M x+m——(x+1sin0)=udt2 dt2整理后得:(M+m)X-ml(sin0)02+ml(cos0)0=u小球的力矩平衡方程:(Fcoos0)1-(Fsin0)1=(mgsin0)1rd2 …F=md--x=m[X-1(sin0)02+1(cos0)0]F=m—y=m[-1(cos0)02-1(sin0)0]尸x=x+1sin0Yy=1cos0CGmxcos0-m1(sin0cos0)02+m1(cos20)0+m1(sin0cos0)02+m1(sin20)0=mgsin0整理可得:mxcos0+m10=mgsin0最后得到倒立摆系统的动力学方程:(M+m)x-m1(sin0)02+m1(cos0)0=umxcos0+m10=mgsin0

显然该系统为明显的非线性系统。但是对小车施加驱动力的目的是要保持小球在垂直方向的姿态,因此,我们关注的是小球在垂直方向附近的动态行为变化,为此将系统在该参考位(0=0)附近进行线性化处理。2.3模型转化微分方程一状态方程由倒摆系统的动力学模型(M+m)x-mg(sin0)。2+ml(cos0)B=umXcos0+ml0=mgsin0取如下状态变量:z=0,z=0=z,z=x,z=x=z1 2 1 3 4 3可得到倒摆系统的状态方程:z一0一0一d d0.——z=——dt dtxxucosz一(M+m)gsinz+ml(coszsinz)z2 1 1 1 1 2_mlcos2z-(M+m)lz4u+ml(sinz)z2一mgcoszsinz 1 2 1 1M+m一mcos2z12.4状态方程的线性化:采用Jacobian矩阵线性化模型,最终得到系统的线性化状态方程为:1001000(M+m)gdz_ MldT— 0m_M假定系统的输出为倒摆的角度和小车的x轴坐标,则系统的输出方程为:「0]一「0]一=CZz1 0 0 0]0・0 0 1 0xLx」

三基于状态反馈的倒立摆系统设计3.1系统的开环仿真3.1.1开环仿真的系统Simulink结构开环仿真的系统Simulink结构图如图3-1所示图3-1开环仿真Simulink结构图运行后观察小车位置响应曲线如图3-2所示,小球角度响应曲线如图3-3所示。图3-2cartpos响应曲线

图3-3rodabgle响应曲线3.1.2开环系统的分析由图3-2和图3-3所示,小球的角度会随着小车的位移的增大而增大,并不能自动调整在平衡点附近来回摆动。可见开环系统并不能维持系统的稳定性。3.2输出反馈设计方法3.2.1输出反馈仿真输出反馈结构Simulink结构图如图3-4所示图3-4输出反馈Simulink结构图运行后系统波形倒摆的角度的响应曲线如图3-5,小车的位置的响应曲线图3-6所示。

图3-5倒摆的角度响应曲线图3-6小车的位置响应曲线3.2.2输出反馈系统的分析通过反复的调整和研究增益k1、k2对于系统误差的敏感性,最终能够稳定系统。然而系统的动态性能远不能让人满意,对于k1=-50,k2=-2,系统只是临界稳定,它仍在新的参考点附近反复震荡。3.3状态反馈设计3.3.1基于状态反馈控制器的倒立摆设计过程(1) 系统能控性判别,应用可控性判别矩阵CM=ctrb(A,B),再判断该矩阵的秩rank(CM)=4,由开环系统分析部分已经得知系统状态完全能控。(2) 闭环系统的极点配置。根据系统的动态性能,确定闭环系统的期望几点clp,clp=[-1.5+3.0j-1.5-3.0j-5-4]。(3) 确定反馈增益。应用MATLAB的place函数Ks=place(A,B,clp),确定反馈增益Ks,Ks=[-432.6154-176.2944-89.5077-64.1472]。系统设计。由状态反馈方框图可得系统的状态空间表达式为x=Ax+Bu=Ax+B(Nv-Kx)=(A-BK)x+BNy=Cx此时,系统矩阵为A-BKs,(其中Ks为反馈增益矩阵),控制矩阵为BN(其中N=-1/c-(A-BK)-1B),因为对小车的控制要求静态终值limx(t)=1,所r 2 s t”3以limc(sI-A+B-K)-1BN=1。此时的系统设计sys=ss(A-B*K,B*N,C,D)52 s3.3.2状态反馈仿真状态反馈结构Simulink结构图如图3-7所示图3-7状态反馈Simulink结构图小车位置和状态变量的响应曲线如图3-8所示图3-8小车位置和状态变量的响应曲线

3.3.3状态反馈分析从响应曲线可以看出,小车开始沿x轴正向移动,大约3s后静止在x=1m处。并且此时所有的状态变量都趋于0,x(t)趋于平衡点。3.4全维状态观测器的倒立摆控制系统设计与仿真3.4.1基于全维状态观测器的倒立摆系统设计步骤(1) 系统能观性判别。应用客观性判别矩阵N=obsv(A,C),判别该矩阵的秩rank(N)=4,所以系统状态完全能观。(2) 状态观测器闭环极点配置。适当选择观测器的极点,使观测器的动态速度是系统的两倍以上,所观测的极点op=2*clp。(3) 指定极点的观测器增益L。同样应用place函数:G=place(A’,B’,op),G=G’,G=1.0e+00.*[-2.882-9.84010.0240.2382]。(4) 系统设计。. A Ax=Ax+bu=Ax+b(v一Kx)=Ax一bKx+bv.Ax=(A-GC)x+Gy+bu=(A-GC)x+GCx+b(v一Kx)=(A-GC-bK)x+GCx+bvy=cxxx=.AxAxx=.AxAiiA1-21A12A22」B1B2」v,y=CT0-其中A=A,A=-bK,A=A-GC-bK,B=B=bN11 12 s21 s1 2 r3.4.2系统仿真基于状态观测器的状态反馈Simulink结构图如图3-9所示图3-9基于状态观测器的状态反馈图3-9基于状态观测器的状态反馈Simulink结构图仿真结果状态曲线图如图3-10,图3-11显示了系统状态与观测器得到的估计状态之间的误差曲线3-10小车位置和倒摆角度响应曲线3-11状态变量的误差曲线3.4.3基于状态观测器的状态反馈曲线分析从响应曲线可以看出,小车开始沿x轴正向移动,并且此时所有的状态变量都趋于0,x(t)趋于平衡点。四锅炉过热汽温控制系统设计及仿真4.1蒸汽温度控制的任务锅炉出口过热蒸汽温度是蒸汽的重要质量指标,是整个锅炉汽水通道中温度最高的,直接关系到设备的安全和系统的生产效率。过高,使金属强度降低,影响设备安全;过低,使全厂热效率显著下降,每下降5oC使热效率下降1%。锅炉过热蒸汽温度控制的基本任务就是维持过热器出口温度在允许范围内,保护设备安全,并使生产过程经济、高效的持续运行。4.2影响蒸汽温度的因素(1)减温水量QW(控制量)(2)蒸汽流量D(3)烟气热量QH4.3蒸汽温度系统开环模型建立4.3.1减温水量对蒸汽温度的影响过热器具有多分布参数的对象,可以把管内蒸汽和金属管壁看作多个单容对象串联组成的多容对象。当减温水流量发生变化后,需要通过这些串联单容对象,最终引起出口蒸汽温度变化。减温器距离出口越远延迟就越大。4.3.2动态特性本实验采用的动态特性的高阶模型为负荷为100%,动态特性为(1)导前区:W(s)=1.58 (2)惰性区W(s)=一245一2 (14s+1)2 1 (15.8s+1)44.4蒸汽温度控制系统设计4.4.1开环系统动态特性仿真及分析开环系统动态特性如图4-1所示图4-1开环系统动态特性Simulink结构图

运行后开环动态特性曲线如图4-2所示图4-2开环动态特性曲线4.4.2开环特性曲线分析由图4-2可知,系统在250秒左右稳定在3.8。4.5单回路控制系统4.5.1单回路控制系统仿真及分析单回路控制系统仿真如图4-3所示图4-3单回路控制系统Simulink结构图4.5.2系统PID参数的整定(1) 取Ti=8,Td=0。P较大(Kp较小)工况稳定时投入自动;(2) 逐渐减小P(或增大Kp)每改变一次都给系统施加一次定值阶跃,观察输出曲线,直至出现等幅振荡(四,五次即可),如图4-4所示,记录此时的Kp=0.61,Pm=1/Kp=1.64,测出振荡周期Tm=150;

图4-4等幅震荡曲线(3)PID参数整定经验公式计算PTiPI2.2Pm=0.5720.85Tm=10.2根据整定的参数,进行PID参数设置如图4-5所示—(1+ —)E(S)=pTSi图4-5参数设置得到仿真特性曲线如图4-6所示图4-6PI调节特性曲线

(4)可见振荡较厉害,响应曲线品质不够理想,在此基础上继续调整,增大积分时间、减小比例系数(均为增强稳定性)并尝试加上微分作用。参数整定如图4-7所示图4-7参数设置图4-8单回路控制系统仿真特性曲线4.5.3单回路控制系统仿真曲线分析由图4-8可见,控制效果大大改善,有效抑制了超调并增强稳定性,快速达到平衡。4.6串级控制系统4.6.1串级控制系统仿真串级控制系统仿真Simulink结构图如图4-9所示

图4-9图4-9串级控制系统仿真Simulink结构图4.6.2系统PID参数的整定取Ti=8,Td=0。P较大(Kp较小)工况稳定时投入自动;逐渐减小P(或增大Kp)每改变一次都给系统施加一次定值阶跃,观察输出曲线,直至出现等幅振荡(四,五次即可),如图4-10所示,记录此时的Kp=2.4,Pm=1/Kp=0.42,测出振荡周期Tm=100;图4-10等幅震荡曲线(3)PID参数整定经验公式计算PTiPI2.2Pm0.85Tm根据整定的参数,进行PID参数设置如图4-11所示—(1+ —)E(S)=pTSi

图4-11参数设置得到仿真特性曲线如图4-12所示图4-12PI调节特性曲线可见振荡较厉害,响应曲线品质不够理想,在此基础上继续调整,增大积分时间、减小比例系数(均为增强稳定性)调整后的PID参数如图4-13所示图4-13调整后的PID参数串级控制系统仿真特性曲线如图4-14所示图4-14串级

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论