




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100 B.50 C.20 D.102.点P(6,-8)关于原点的对称点的坐标为()A.(-6,8) B.(–6,-8) C.(8,-6) D.(–8,-6)3.如图,、是的两条弦,若,则的度数为()A. B. C. D.4.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是()A. B.C. D.5.如图,在Rt△ABC中,∠C=90°,若AB=5,AC=4,则cosB的值(
)A. B. C. D.6.方程x(x﹣1)=0的解是().A.x=1 B.x=0 C.x1=1,x2=0 D.没有实数根7.下列各点中,在反比例函数图象上的点是A. B. C. D.8.在下列命题中,正确的是A.对角线相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形9.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测.根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点” B.小亮:“中午12点”C.小刚:“下午5点” D.小红:“什么时间都行”10.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m11.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近12.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则不等式ax2<bx+c的解集是______.14.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.15.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。16.已知tan(α+15°)=,则锐角α的度数为______°.17.若,则______.18.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数的图象交于两点,且点的横坐标为.(1)求反比例函数的解析式;(2)求点的坐标.20.(8分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.21.(8分)化简分式,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.22.(10分)有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.23.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.24.(10分)如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.25.(12分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.26.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】圆锥的侧面积为半径为10的半圆的面积.【详解】解:圆锥的侧面积=半圆的面积=,故选B.【点睛】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.2、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.3、C【分析】根据同弧所对的圆周角是圆心角的一半即可求出结论.【详解】解:∵∴∠BOC=2∠A=60°故选C.【点睛】此题考查的是圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.4、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此规律即可得出结论.【详解】解:设第n秒运动到Pn(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019为(,﹣),故答案为B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律并根据规律找出点的坐标.5、B【分析】先由勾股定理求得BC的长,再由锐角三角函数的定义求出cosB即可;【详解】由题意得BC=则cosB=;故答案为:B.【点睛】本题主要考查了勾股定理,锐角三角函数的定义,掌握勾股定理,锐角三角函数的定义是解题的关键.6、C【解析】根据因式分解法解方程得到x=0或x﹣1=0,解两个一元一次方程即可.【详解】解:x(x﹣1)=0x=0或x﹣1=0∴x1=1,x2=0,故选C.【点睛】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.7、B【分析】把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.8、C【分析】根据平行四边形、矩形、菱形、正方形的判定方法逐项分析解答即可.【详解】解:A、∵等腰梯形的对角线相等,但不是平行四边形,∴应对角线相等的四边形不一定是平行四边形,故不正确;B、∵有一个角是直角的四边形可能是矩形、直角梯形,∴有一个角是直角的四边形不一定是矩形,故不正确;C、∵有一组邻边相等的平行四边形是菱形,故正确;D、对角线互相垂直平分的四边形是菱形,故不正确.故选:C.【点睛】本题考查了平行四边形、矩形、菱形、正方形的判定方法的理解,熟练掌握平行四边形、矩形、菱形、正方形的判定方法的判定方法是解答本题的关键.9、C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.10、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.11、D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.故选:D.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.12、B【解析】列表得:
1
2
3
4
1
-
2+1=3
3+1=4
4+1=5
2
1+2=3
-
3+2=5
4+2=6
3
1+3=4
2+3=5
-
4+3=7
4
1+4=5
2+4=6
3+4=7
-
∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:.故选B.二、填空题(每题4分,共24分)13、﹣2<x<1【分析】直接利用函数图象结合其交点坐标得出不等式ax2<bx+c的解集即可;【详解】解:如图所示:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴不等式ax2<bx+c的解集,即一次函数在二次函数图象上方时,得出x的取值范围为:﹣2<x<1.故答案为:﹣2<x<1.【点睛】本题主要考查了二次函数与不等式(组),掌握二次函数的性质和不等式的解是解题的关键.14、【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】,,,∴是直角三角形,设圆的半径为r,利用三角形的面积有即解得∴阴影部分的面积为∵三角形的面积为∴飞镖落在阴影部分的概率为故答案为:.【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.15、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16、15【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17、【分析】利用“设法”表示出,然后代入等式,计算即可.【详解】设,则:,∴,故答案为:.【点睛】本题考查了比例的性质,利用“设法”表示出是解题的关键.18、60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.三、解答题(共78分)19、(1)反比例函数的解析式是y=;(2)(﹣1,﹣6).【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【详解】(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).考点:反比例函数与一次函数的交点问题.20、1cm.【分析】设每个彩条的宽度为xcm,根据剩余面积为504cm2,建立方程求出其解即可.【详解】设每个彩条的宽度为xcm,由题意,得(30﹣2x)(20﹣2x)=504,解得:x1=24(舍去),x2=1.答:每个彩条的宽度为1cm.【点睛】本题考查一元二次方程的应用,解题的关键是根据剩余面积=总面积-彩条面积列出方程.21、;x=2时,原式=.【解析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为1的数代入求值.【详解】解:原式=.∵﹣1≤x≤3的整数有-1,1,1,2,3,当x=﹣1或x=1时,分式的分母为1,当x=1时,除式为1,∴取x的值时,不可取x=﹣1或x=1或x=1.不妨取x=2,此时原式=.22、(1)所有结果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【详解】(1)根据题意画出树状图如下:结果为:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2)当x=-1时,y==-2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.23、(1)88°;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由,得,由平分,,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到答.【详解】(1)∵是的完美分割线,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,为等腰三角形.,,,是的完美分割线.∵是以为底边的等腰三角形,∴,∵是的完美分割线,∴,设,则,,,.【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.24、(1)证明见解析;(2)证明见解析;(3).【分析】(1)如图,连结OD,只需推知OD⊥DF即可证得结论;(2)根据平行线的性质得到∠FDB=∠CBD,由圆周角的性质可得∠CAD=∠BAD=∠CBD=∠BDF,即AD平分∠BAC;(3)由勾股定理可求AD的长,通过△BDE∽△ADB,可得,可求DE=,AE=,由锐角三角函数可求CE的长.【详解】(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD=,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=【点睛】本题考查了圆的综合问题,掌握平行线的性质、圆周角的性质、勾股定理、相似三角形的性质以及判定定理、锐角三角函数的定义是解题的关键.25、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司保安合同样本
- 共贷协议合同样本
- 个人授课合同样本
- 企业代建合同样本
- 亚马逊注册兼职合同样本
- 代售合同样本
- 乳鸽生产销售合同样本
- 共享收益合同标准文本
- 个人借款还款合同样本
- 关于分配土地合同样本
- 债权法学习通超星期末考试答案章节答案2024年
- 安全生产标准化基本规范评分表
- 《Linux网络操作系统实用教程(CentOS8)第2版》全套教学课件
- 2015年919公务员联考《申论》政法干警河北卷及参考答案
- 幼儿园中班语言散文欣赏《芽》课件
- 汽轮发电机组轴系扭振在线监测、分析与保护系统研究
- 期中测试卷(1-4单元)(试题)-2023-2024学年六年级下册数学苏教版
- 医务人员不良执业行为记分管理制度
- 高中数学奥赛辅导教材(共十讲)
- 苏科版八年级数学下册常考点微专题提分精练难点特训(四)选填压轴50道(原卷版+解析)
- 《竞争对手的分析》课件
评论
0/150
提交评论