版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. B. C. D.2.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°3.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为()A.3cm B.6cm C.12cm D.24cm4.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.5.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上 B.对称轴是y轴C.有最低点 D.在对称轴右侧的部分从左往右是下降的6.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.7.如图,点、分别在的边、上,且与不平行.下列条件中,能判定与相似的是()A. B. C. D.8.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.9.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
)A.
B.
C.
D.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差11.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.12.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.14.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.15.如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则___________(填“>”或“<”或“=”)16.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.17.方程x2=1的解是_____.18.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________三、解答题(共78分)19.(8分)2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年7月20日猪肉价格比今年年初上涨了60%,某市民今年7月20日在某超市购买1千克猪肉花了80元钱.(1)问:今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克65元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?20.(8分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:21.(8分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1)当销售价格上涨时,请写出每天的销售量(件)与销售价格(元/件)之间的函数关系式.(2)如果要求每天的销售量不少于10件,且每件文具的利润至少为18元,间当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?22.(10分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.23.(10分)在平面直角坐标系xOy中,抛物线与y轴交于点A.(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,.若抛物线与线段PQ恰有两个公共点,结合函数图象,求a的取值范围.24.(10分)国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.(1)求A影院《我和我的祖国》的电影票为多少钱一张;(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.25.(12分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.26.平安超市准备进一批书包,每个进价为元.经市场调查发现,售价为元时可售出个;售价每增加元,销售量将减少个.超市若准备获得利润元,并且使进货量较少,则每个应定价为多少
参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2、B【详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B3、C【分析】根据OB=10cm,OM:MB=4:1,可求得OM的长,再根据垂径定理和勾股定理可计算出答案.【详解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故选:C.【点睛】本题考查了垂径定理和勾股定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.4、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.5、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x)2+,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=,故选项B错误;当x=时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.6、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.7、A【分析】根据两边对应成比例且夹角相等的两个三角形相似即可求解.【详解】解:在与中,∵,且,∴.故选:A.【点睛】此题考查了相似三角形的判定:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.8、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.9、B【解析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10、D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.11、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.12、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.二、填空题(每题4分,共24分)13、4【分析】过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,利用正方形的性质易证△ADG≌△DCF,得到AG=DF,设D点横坐标为m,则OF=AG=DF=m,易得OE为△CDF的中位线,进而得到OF=OC,然后利用勾股定理建立方程求出,进而求出k.【详解】如图,过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,∵四边形ABCD为正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF设D点横坐标为m,则OF=AG=DF=m,∴D点坐标为(m,m)∵OE∥DF,CE=ED∴OE为△CDF的中位线,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D点坐标为(m,m)∴故答案为:4.【点睛】本题考查反比例函数与几何的综合问题,需要熟练掌握正方形的性质,全等三角形的判定和性质,中位线的判定和性质以及勾股定理,解题的关键是作出辅助线,利用全等三角形推出点D的横纵坐标相等.14、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.15、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则∵点P、点Q在反比例函数的图像上,∴,∵四边形OMPA、ONQB是矩形,∴OM=AP,OB=NQ,∵,,∴,∴,∴;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.16、【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:;故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、±1【解析】方程利用平方根定义开方求出解即可.【详解】∵x2=1∴x=±1.【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.18、(30-2x)(20-x)=6×1.【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.三、解答题(共78分)19、(1)今年年初猪肉的价格为每千克50元;(2)猪肉的售价应该下降3元.【分析】(1)设今年年初猪肉的价格为每千克元,根据今年7月20日猪肉的价格今年年初猪肉的价格上涨率),即可得出关于的一元一次方程,解之即可得出结论;(2)设猪肉的售价应该下降元,则每日可售出千克,根据总利润每千克的利润销售数量,即可得出关于的一元二次方程,解之取其较大值即可得出结论.【详解】解:(1)设今年年初猪肉的价格为每千克元,依题意,得:,解得:.答:今年年初猪肉的价格为每千克50元.(2)设猪肉的售价应该下降元,则每日可售出千克,依题意,得:,整理,得:,解得:,.让顾客得到实惠,.答:猪肉的售价应该下降3元.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.20、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;(2)设A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【详解】证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P•OA1(2)设A1A2=x,则OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P•OA1∴,∴,解得,(负值舍去)∴,即【点睛】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.21、(1);(2)当销售价格定为38元时,该文具每天的销售利润最大,最大利润为1元【分析】(1)根据实际销售量等于,化简即可;(2)利用二次函数的性质及题中对销售量及每件文具利润的约束条件,可求得答案.【详解】解:(1)∴每天的销售量(件)与销售价格(元/件)之间的函数关系式为:;(2)设销售利润为元,由题意得:∵,解得:∵,抛物线的对称轴为直线∴抛物线开口向下,在对称轴的右侧,随的增大而减小∴当时,取最大值为1.答:当销售价格定为38元时,该文具每天的销售利润最大,最大利润为1元.【点睛】本题主要考查了一元二次方程和二次函数的应用,准确列式是解题的关键.22、(1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;
(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值.【详解】(1)∵a,b,c,d是成比例线段
∴,
即,
∴c=1;
(2)设=k,则a=2k,b=3k,c=1k,
∵a+b-5c=15
∴2k+3k-20k=15
解得:k=-1
∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.23、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴对称,求出对称轴从而即可求点B的坐标;(3)结合函数图象,抛物线与线段PQ恰有两个公共点,分别对有两个公共点的情况进行讨论求解.【详解】解:(1)由题意抛物线与y轴交于点A,将x=0代入求出坐标为;(2)∵;∴.(3)当抛物线过点P(4,0)时,,∴.此时,抛物线与线段PQ有两个公共点.当抛物线过点时,a=1,此时,抛物线与线段PQ有两个公共点.∵抛物线与线段PQ恰有两个公共点,∴.当抛物线开口向下时,.综上所述,当或时,抛物线与线段PQ恰有两个公共点.【点睛】本题考查二次函数图像相关性质,熟练掌握二次函数图像相关性质是解题的关键.24、(1)A影院《我和我的祖国》的电影票为60元一张;(2)a的值为1.【分析】(1)设A影院《我和我的祖国》的电影票为x元一张,由5张影票的总价格为310得关于x的一元一次方程,求解即可;(2)当日A、B两个影院《我和我的祖国》的票房总收入为505200元,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2027年中国基金会市场运行动态及行业投资潜力预测报告
- 关于编制制粒干燥设备项目可行性研究报告编制说明
- 2025年物业管理服务项目可行性分析报告
- 中国聚丁烯管市场行情动态分析及发展前景趋势预测报告
- 2025抵押借款合同书样式
- 2025通风排烟工程施工合同书补充
- 2025有责任担保借款合同下载
- 2025防尘网钢构工程施工合同
- 2025床位租用合同范文
- 2025郎溪平港首府木工工程项目部合同
- 2024年人教版三年级上数学教学计划和进度安排
- 《电能计量知识介绍》课件
- 2023-2024学年山东省潍坊市高新区六年级(上)期末数学试卷(含答案)
- 弹性模量自动生成记录
- 2024年教师师德师风工作计划(2篇)
- 物流行业服务质量保障制度
- 养老院物资采购流程及制度
- 眼镜店年终总结及计划
- 汽车行走的艺术学习通超星期末考试答案章节答案2024年
- 一年级新生家长会课件(共25张课件)
- 广东省东华高级中学2025届高一上数学期末考试试题含解析
评论
0/150
提交评论