版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:213.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥44.斜坡坡角等于,一个人沿着斜坡由到向上走了米,下列结论①斜坡的坡度是;
②这个人水平位移大约米;③这个人竖直升高米;
④由看的俯角为.其中正确的个数是()A.1个 B.2个 C.3个 D.4个5.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.6.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④7.平行四边形四个内角的角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形8.下列计算,正确的是()A.a2·a3=a6 B.3a2-a2=2 C.a8÷a2=a4 D.(a2)3=a69.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-110.如图,在正方形网格上,与△ABC相似的三角形是()A.△AFD B.△FED C.△AED D.不能确定二、填空题(每小题3分,共24分)11.若代数式是完全平方式,则的值为______.12.底角相等的两个等腰三角形_________相似.(填“一定”或“不一定”)13.若是关于的方程的一个根,则的值为_________________.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15.如图,在扇形中,,正方形的顶点是的中点,点在上,点在的延长线上,当正方形的边长为时,则阴影部分的面积为_________.(结果保留)16.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)17.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.18.若方程有两个不相等的实数根,则的值等于__________________.三、解答题(共66分)19.(10分)如图,和都是等腰直角三角形,,的顶点与的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,射线与线段相交于点,与射线相交于点.(1)求证:;(2)求证:平分;(3)当,,求的长.20.(6分)如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的长.21.(6分)在中,,.(Ⅰ)如图Ⅰ,为边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.求证:(1);(2).(Ⅱ)如图Ⅱ,为外一点,且,仍将线段绕点逆时针旋转得到,连接,.(1)的结论是否仍然成立?并请你说明理由;(2)若,,求的长.22.(8分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.23.(8分)在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.24.(8分)已知是⊙的直径,为等腰三角形,且为底边,请仅用无刻度的直尺完成下列作图.(1)在图①中,点在圆上,画出正方形;(2)在图②中,画菱形.25.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.26.(10分)甲、乙两人用如图所示的两个转盘(每个转盘分别被分成面积相等的3个扇形)做游戏,游戏规则:甲转动A盘一次,乙转动B盘一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;并求出甲获胜的概率.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.2、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【点睛】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.3、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.4、C【解析】由题意对每个结论一一分析即可得出其中正确的个数.【详解】解:如图,斜坡的坡度为tan30°==1:,正确.
②AB=20米,这个人水平位移是AC,
AC=AB•cos30°=20×≈17.3(米),正确.
③这个人竖直升高的距离是BC,
BC=AB•sin30°=20×=10(米),正确.
④由平行线的性质可得由B看A的俯角为30°.所以由B看A的俯角为60°不正确.
所以①②③正确.
故选:C.【点睛】此题考查的知识点是解直角三角形的应用-坡度坡角-仰角俯角问题,关键是熟练掌握相关概念.5、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.6、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.7、B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,
∴∠BAD+∠ABC=180°,
∵AE、BE分别是∠BAD、∠ABC的平分线,
∴∠BAE+∠ABE=∠BAD+∠ABC=90°,
∴∠FEH=90°,
同理可求∠F=90°,∠FGH=90°,∠H=90°,
∴四边形EFGH是矩形.故选B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用.8、D【分析】按照整式乘法、合并同类项、整式除法、幂的乘方依次化简即可得到答案.【详解】A.a2·a3=a5,故该项错误;B.3a2-a2=2a2,故该项错误;C.a8÷a2=a6,故该项错误;D.(a2)3=a6正确,故选:D.【点睛】此题考查整式的化简计算,熟记整式乘法、合并同类项、整式除法、幂的乘方的计算方法即可正确解答.9、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.10、A【分析】根据题意直接利用三角形三边长度,得出其比值,进而分析即可求出相似三角形.【详解】解:∵AF=4,DF=4,AD=4,AB=2,BC=2,AC=2,∴,∴△AFD∽△ABC.故选:A.【点睛】本题主要考查相似三角形的判定以及勾股定理,由勾股定理得出三角形各边长是解题的关键.二、填空题(每小题3分,共24分)11、【分析】利用完全平方式的结构特征判断即可确定出m的值.【详解】解:∵代数式x2+mx+1是一个完全平方式,
∴m=±2,
故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12、一定【分析】根据等腰三角形的性质得到∠B=∠C,∠E=∠F,根据相似三角形的判定定理证明.【详解】如图:∵AB=AC,DE=EF,∴∠B=∠C,∠E=∠F,∵∠B=∠E,∴∠B=∠C=∠E=∠F,∴△ABC∽△DEF,故答案为一定.【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键.13、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.【点睛】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.14、0.1【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.101,所以估计种子发芽的概率为0.101,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.101,故可以估计种子发芽的概率为0.101,精确到0.1,即为0.1,故本题答案为:0.1.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15、【分析】连结OC,根据等腰三角形的性质可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=-×4×4=4π-1,故答案为4π-1.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.16、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.17、1【解析】试题解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为1.18、1【分析】根据方程有两个不相等的实数根解得a的取值范围,进而去掉中的绝对值和根号,化简即可.【详解】根据方程有两个不相等的实数根,可得解得a<∴∴===3-2=1故答案为:1.【点睛】本题考查一元二次方程根的判别式和整式的化简求值,当△>0,方程有2个不相等的实数根.三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3)5.【分析】(1)由△ABC和△DEF是两个等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得△BPE∽△CEQ;(2)只要证明△BPE∽△EPQ,可得∠BEP=∠EQP,且∠BEP=∠CQE,可得结论;(3)由相似三角形的性质可求BE=3=EC,可求AP=4,AQ=3,即可求PQ的长.【详解】解:(1)和是两个等腰直角三角形,,,即,,,,(2),,,,,,,且,,平分(3),且,,,,,,,,.【点睛】本题考查相似形综合题、等腰直角三角形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.20、(1)详见解析;(1)1.【分析】(1)根据OD⊥BC于E可知,所以BD=CD,故可得出结论;(1)先根据圆周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于点O是AB的中点,所以OE是△ABC的中位线,故,在Rt△OBE中根据勾股定理可求出OB的长,故可得出DE的长,进而得出结论.【详解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,
∴∠BCD=∠CBD;(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵OD⊥BC于E,
∴OD∥AC,
∵点O是AB的中点,
∴OE是△ABC的中位线,在Rt△OBE中,
∵BE=4,OE=3,,即OD=OB=5,
∴DE=OD-OE=5-3=1.21、(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6.【解析】(Ⅰ)(1)根据旋转的性质,得到AD=AE,∠BAD=∠CAE,然后根据SAS证明全等即可;(2)由全等的性质,得到BD=CE,然后即可得到结论;(Ⅱ)(1)与(Ⅰ)同理,即可得到;(2)根据全等的性质,得到,然后利用勾股定理求出DE,根据特殊角的三角函数值,即可求出答案.【详解】解:(Ⅰ)(1)∵,∴,即,在和中,,∴;(2)∵,∴,∴;(Ⅱ)(1)的结论仍然成立,理由:∵将线段绕点逆时针旋转得到,∴是等腰直角三角形,∴,∵,即,在与中,,∴;(2)∵,∴,∵,,∴,∴,∵,∴.【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1);(2)P(,);(3)C(-3,-5)或(-3,)【分析】(1)设顶点式,将B点代入即可求;(2)根据4m+3n=12确定点P所在直线的解析式,再根据内切线的性质可知P点在∠BAO的角平分线上,求两线交点坐标即为P点坐标;(3)根据角之间的关系确定C在∠DBA的角平分线与对称轴的交点或∠ABO的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B(0,4)代入得,4=9a∴a=∴(2)如图∵P(m,n),且满足4m+3n=12∴∴点P在第一象限的上,∵以点P为圆心的圆与直线AB、x轴相切,∴点P在∠BAO的角平分线上,∠BAO的角平分线:y=,∴,∴x=,∴y=∴P(,)(3)C(-3,-5)或(-3,)理由如下:如图,A´(3,0),可得直线LA´B的表达式为,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG,2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=,∴D(-3,),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=x+4,∴C1的坐标为(-3,);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3,)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.23、(1);(2)或;(3)结论成立,理由见解析【分析】(1)设影子抛物线表达式是,先求出原抛物线的顶点坐标,代入,可求解;(2)设原抛物线表达式是,用待定系数法可求,,即可求解;(3)分别求出两个抛物线的顶点坐标,即可求解.【详解】解:(1)原抛物线表达式是原抛物线顶点是,设影子抛物线表达式是,将代入,解得,所以“影子抛物线”的表达式是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通讯行业营业员岗位总结
- 幼儿园工作总结点亮孩子未来的希望
- 医疗器械行业技术岗位总结
- 2024校园消防安全应急预案(34篇)
- 减资协议书(2篇)
- 别墅区住宅租赁协议(2篇)
- 全民读书心得体会
- Unit1TeenageLife(词汇短语句式)-2025届高三人教版英语一轮复习闯关攻略(解析版)
- 第9课 列宁与十月革命(分层作业)(解析版)
- 2023-2024学年北京市昌平区高三上学期期末考试地理试题(解析版)
- 养老院物资采购流程及制度
- 眼镜店年终总结及计划
- 汽车行走的艺术学习通超星期末考试答案章节答案2024年
- 一年级新生家长会课件(共25张课件)
- 广东省东华高级中学2025届高一上数学期末考试试题含解析
- GB/T 22081-2024网络安全技术信息安全控制
- 2024-2025学年上海市闵行区华东师大二附中九年级(上)月考数学试卷(10月份)(含解析)
- 心理健康教育(共35张课件)
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- GB/T 44271-2024信息技术云计算边缘云通用技术要求
- 工业项目投资估算及财务评价附表(有计算公式)
评论
0/150
提交评论