2022年河南省新乡七中九年级数学第一学期期末经典试题含解析_第1页
2022年河南省新乡七中九年级数学第一学期期末经典试题含解析_第2页
2022年河南省新乡七中九年级数学第一学期期末经典试题含解析_第3页
2022年河南省新乡七中九年级数学第一学期期末经典试题含解析_第4页
2022年河南省新乡七中九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果反比例函数y=kx的图像经过点(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限2.如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:A.2:1 B.:1 C.3: D.3:23.方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,则m的值为()A.任何实数. B.m≠0 C.m≠2 D.m≠﹣24.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤5.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1 B.7 C.1或7 D.无法确定6.下列运算中,计算结果正确的是()A.a4•a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b7.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.; B.; C.; D.以上都不对;8.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤49.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.110.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.011.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣312.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE二、填空题(每题4分,共24分)13.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个14.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有_____家公司参加了这次会议.15.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.16.若方程的一个根,则的值是__________.17.如图,将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,使得点B′、A、C在同一条直线上,则α等于_____°.18.如图,PA与⊙O相切于点A,AB是⊙O的直径,在⊙O上存在一点C满足PA=PC,连结PB、AC相交于点F,且∠APB=3∠BPC,则=_____.三、解答题(共78分)19.(8分)如图,胡同左右两侧是竖直的墙,一架米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为,此时梯子顶端恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达处,此时测得梯子与地面的夹角为,问:胡同左侧的通道拓宽了多少米(保留根号)?20.(8分)如图,BD、CE是的高.(1)求证:;(2)若BD=8,AD=6,DE=5,求BC的长.21.(8分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直线与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.22.(10分)如图,一次函数的图象分别交x轴、y轴于C,D两点,交反比例函数图象于A(,4),B(3,m)两点.(1)求直线CD的表达式;(2)点E是线段OD上一点,若,求E点的坐标;(3)请你根据图象直接写出不等式的解集.23.(10分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.24.(10分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.(1)如图1,DN交AB的延长线于点F.求证:;(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.25.(12分)将矩形纸片沿翻折,使点落在线段上,对应的点为,若,求的长.26.某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限.【详解】∵反比例函数y=kx的图象经过点(-3,-4∴k=-3×(-4)=12,∵12>0,∴该函数图象位于第一、三象限,故选:B.【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值.2、B【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,

∴AF=AB=a,

∵矩形AFED与矩形ABCD相似,

∴,即,

∴a∶b=.

所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.3、C【分析】根据二次项系数不为0列出不等式,解不等式得到答案.【详解】∵方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,∴m﹣2≠0,解得,m≠2,故选:C.【点睛】本题考查了一元一次方程的应用问题,掌握一元一次方程的性质以及应用是解题的关键.4、D【分析】①只需根据抛物线的开口、对称轴的位置、与y轴的交点位置就可得到a、b、c的符号,从而得到abc的符号;②只需利用抛物线对称轴方程x==1就可得到2a与b的关系;③只需结合图象就可得到当x=1时y=a+b+c最小,从而解决问题;④根据抛物线x=图象在x轴上方,即可得到x=所对应的函数值的符号;⑤由可得,然后利用抛物线的对称性即可解决问题;⑥根据函数图像,即可解决问题.【详解】解:①由抛物线的开口向下可得a>0,

由对称轴在y轴的右边可得x=>0,从而有b<0,

由抛物线与y轴的交点在y轴的负半轴上可得c<0,

则abc>0,故①错误;

②由对称轴方程x==1得b=-2a,即2a+b=0,故②正确;

③由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故③正确;

④由图像可知,x=所对应的函数值为正,

∴x=时,有a-b+c>0,故④错误;

⑤若,且x1≠x2,

则,

∴抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,

∴1-x1=x2-1,即x1+x2=2,故⑤正确.⑥由图可知,当时,函数值有正数,也有负数,故⑥错误;∴正确的有②③⑤;故选:D.【点睛】本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题.5、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,EF=OF+OE=1,所以AB与CD之间的距离是1或1.故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理及分类讨论的思想的应用.6、C【分析】根据幂的运算法则即可判断.【详解】A、a4•a=a5,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,正确;D、(ab)3=a3b3,故此选项错误;故选C.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.7、C【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:

由勾股定理得:AB=,

所以cosB=,sinB=,所以只有选项C正确;

故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.8、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.9、C【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.10、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,

∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).

故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.11、B【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.二、填空题(每题4分,共24分)13、14【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.14、1【分析】每家公司都与其他公司鉴定了一份合同,设有x家公司参加,则每个公司要签份合同,签订合同共有份.【详解】设共有x家公司参加了这次会议,根据题意,得:x(x﹣1)=21,整理,得:x2﹣x﹣56=0,解得:x1=1,x2=﹣7(不合题意,舍去),答:共有1家公司参加了这次会议.故答案是:1.【点睛】考查了一元二次方程的应用,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数.解答中注意舍去不符合题意的解.15、3【分析】根据线段垂直平分线的性质和折叠的性质得点B′与点A重合,BE=AE,进而可以求解.【详解】在△ABC中,∠ACB=90°,AC=6,AB=1.根据勾股定理,得:BC=2.连接AE,由作图可知:MN是线段AB的垂直平分线,∴BE=AE,BD=AD,由翻折可知:点B′与点A重合,∴△B′CE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案为3.【点睛】本题主要考查垂直平分线的性质定理和折叠的性质,通过等量代换把△B′CE的周长化为AC+BC的值,是解题的关键.16、【分析】将m代入方程,再适当变形可得的值.【详解】解:将m代入方程得,即,所以.故答案为:2020.【点睛】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.17、1°【分析】由等腰三角形的性质可求∠BAC=∠BCA=75°,由旋转的性质可求解.【详解】解:∵∠B=30°,BC=AB,∴∠BAC=∠BCA=75°,∴∠BAB'=1°,∵将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,∴∠BAB'=α=1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用旋转的性质是本题的关键.18、.【分析】连接OP,OC,证明△OAP≌△OCP,可得PC与⊙O相切于点C,证明BC=CP,设OM=x,则BC=CP=AP=2x,PM=y,证得△AMP∽△OAP,可得:,证明△PMF∽△BCF,由可得出答案.【详解】解:连接OP,OC.∵PA与⊙O相切于点A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC与⊙O相切于点C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直径,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.设OM=x,则BC=CP=AP=2x,PM=y,∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM•OP,∴(2x)2=y(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案为:.【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理.正确作出辅助线,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(共78分)19、胡同左侧的通道拓宽了米.【分析】根据题意,得到△BCE为等腰直角三角形,得到BE=CE,再由解直角三角形,求出DE的长度,然后得到CD的长度.【详解】解:如图,∵,∴△BCE为等腰直角三角形,∴,∵,∴,∴;∴胡同左侧的通道拓宽了米.【点睛】本题考查了解直角三角形的应用,解题的关键是掌握题意,正确的进行解直角三角形.20、(1)见解析;(2)BC=.【分析】(1)、是的高,可得,进而可以证明;(2)在中,,,根据勾股定理可得,结合(1),对应边成比例,进而证明,对应边成比例即可求出的长.【详解】解:(1)证明:、是的高,,,;(2)在中,,,根据勾股定理,得,,,,,,,.【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.21、(1)①1,3;②;(2),.【分析】(1)①根据图形M,N间的“近距离”的定义结合已知条件求解即可.②根据可及图形的定义作出符合题意的图形,结合图形作答即可;(2)分两种情况进行讨论即可.【详解】(1)①如图:根据近距离的定义可知:d(A,⊙O)=AC=2-1=1.过点B作BE⊥x轴于点E,则OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案为1,3.②∵由题意可知直线与⊙O互为“可及图形”,⊙O的半径为2,∴.∴.∴.(2)①当⊙G与边OD是可及图形时,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②当⊙G与边CD是可及图形时,如图,过点G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距离的定义可知d(E,⊙G)的最大值为1,∴此时EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根据对称性,OG的最大值为5+2.∴综上所述,m的取值范围为:或【点睛】本题主要考查了圆的综合知识,正确理解“近距离”和“可及图形”的概念是解题的关键.22、(1);(2);(3)或【分析】(1)把点A(,4)代入中,化简计算可得反比例函数的解析式为,将点B(3,m)代入,可得B点坐标,再将A,B两点坐标代入,化简计算即可得直线AB的表达式,即是CD的表达式;(2)设E点的坐标为,则可得D点的坐标为,利用,化简可得,即可得出E点的坐标;(3)由图像,直接得出结论即可.【详解】(1)把点A(,4)代入中,得:解得∴反比例函数的解析式为将点B(3,m)代入得m=2∴B(3,2)设直线AB的表达式为y=kx+b,则有,解得∴直线AB的表达式为(2)设E点的坐标为令,则∴D点的坐标为DE=6-b∵∴解得:∴E点的坐标为(3)∵A,B,两点坐标分别为(,4),(3,2),由图像可知,当时,或【点睛】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握方程思想与分类讨论思想的应用.23、(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表见解析.【解析】直接利用概率公式求解可得;

抽取两人接受采访,故利用列表法可得所有等可能结果.【详解】解:(1)8名学生中至少有三类垃圾投放正确有5人,故至少有三类垃圾投放正确的概率为;(2)列表如下:【点睛】此题考查的是用列表法或树状图法求概率列表法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论