福建省莆田第二十四中学2022-2023学年九年级数学第一学期期末综合测试模拟试题含解析_第1页
福建省莆田第二十四中学2022-2023学年九年级数学第一学期期末综合测试模拟试题含解析_第2页
福建省莆田第二十四中学2022-2023学年九年级数学第一学期期末综合测试模拟试题含解析_第3页
福建省莆田第二十四中学2022-2023学年九年级数学第一学期期末综合测试模拟试题含解析_第4页
福建省莆田第二十四中学2022-2023学年九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长2.sin30°的值为()A. B. C.1 D.3.如图,反比例函数y=与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则b﹣a=()A.8 B.﹣8 C.4 D.﹣44.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.5.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.6.用配方法解方程,配方后得到的方程是()A. B. C. D.7.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交 B.相切 C.相离 D.无法判断8.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS9.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.10.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.011.如图,是的直径,切于点A,若,则的度数为()A.40° B.45° C.60° D.70°12.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是()A.小明认为只有当时,函数值为1;B.小亮认为找不到实数,使函数值为0;C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D.小梅发现函数值随的变化而变化,因此认为没有最小值二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.14.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.15.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.16.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________17.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.18.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.三、解答题(共78分)19.(8分)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长.20.(8分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.(8分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.22.(10分)画出抛物线y=﹣(x﹣1)2+5的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y随x的增大而增大时,写出x的取值范围;(3)若抛物线与x轴的左交点(x1,0)满足n≤x1≤n+1,(n为整数),试写出n的值.23.(10分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=________.(2)(问题解决)如图2,在四边形中,,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段长度的最小值是_______.24.(10分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.25.(12分)如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,26.如图,在与中,,且.求证:.

参考答案一、选择题(每题4分,共48分)1、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.2、B【分析】直接根据特殊角的三角函数值进行选择.【详解】sin30°=,故选:B.【点睛】此题考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3、A【分析】根据反比例函数系数k的几何意义得到|a|=S矩形ADOE,|b|=S矩形BCOE,进而得到|b|+|a|=8,然后根据a<0,b>0可得答案.【详解】解:如图,∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面积为8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函数y=在第二象限,反比例函数y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故选:A.【点睛】本题考查了反比例函数y=(k≠0)的系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.4、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.5、D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.6、A【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x2−4x=1,

配方得:x2−4x+4=1,

即(x−2)2=1.

故选A.【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.7、B【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.8、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.9、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.10、B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.11、A【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,

∴AB⊥AC,

∴∠CAB=90°,

又∵∠C=70°,

∴∠CBA=20°,

∴∠AOD=40°.

故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.12、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可.【详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数1>0,有最小值,所以错误;故选:D.【点睛】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键.二、填空题(每题4分,共24分)13、2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(1﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.14、【解析】设DE=x,则OE=2x,根据矩形的性质可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的长为.【详解】∵四边形ABCD是矩形∴OC=AC=BD=OD设DE=x,则OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的长为.故答案为:【点睛】本题考查的是矩形的性质及勾股定理,掌握矩形的性质并灵活的使用勾股定理是解答的关键.15、【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:

由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,

∴P(美丽).故答案为:.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16、1【分析】由题意可得m2-3m=2020,进而可得2m2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m为一元二次方程x2-3x-2020=0的一个根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案为:1.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.17、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.18、y1<y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系.【详解】∵函数y=﹣(x+1)1+1的对称轴为,∴、在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,且3>1,∴y1<y1.故答案为:y1<y1.【点睛】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)AB=2,OE=.【分析】(1)根据AB是直径即可求得∠ADB=90°,再根据题意可求出OD⊥DE,即得出结论;(2)根据三角函数的定义,即可求得BC,进而得到AB,再在Rt△CDE中,根据直角三角形的性质,可求得DE,再由勾股定理求出OE即可.【详解】(1)连接BD,OD.∵AB是直径,∴∠ADB=90°.又∵AB=BC,∴AD=CD.∵OA=OB,∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∵OD∥BC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)在Rt△CBD中CD,∠ACB=30°,∴BC2,∴AB=2,∴ODAB=1.在Rt△CDE中,CD,∠ACB=30°,∴DECD.在Rt△ODE中,OE.【点睛】本题考查了切线的判定、勾股定理、圆周角定理以及解直角三角形,是一道综合题,难度不大.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;

(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.21、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.【解析】试题分析:(1)AM=DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=DE,AM⊥DE,理由是:如图1,设AM交DE于点O,∵四边形ABCD和四边形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M为线段BG的中点,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如图2,延长AM到N,使MN=AM,连接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考点:旋转的性质;正方形的性质.22、列表画图见解析;(1)开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)x<1;(1)n=﹣1【分析】根据二次函数图象的画法,先列表,然后描点、连线即可画出该抛物线的图象;(1)根据画出的抛物线的图象,可以写出它的开口方向,对称轴和顶点坐标;(2)根据函数图象,可以写出当y随x的增大而增大时,x的取值范围;(1)令y=0求出相应的x的值,即可得到x1的值,然后根据n≤x1≤n+1,(n为整数),即可得到n的值.【详解】解:列表:描点、连线(1)由图象可知,该抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)由图象可知,当y随x的增大而增大时,x的取值范围是x<1;(1)当y=0时,0=﹣(x﹣1)2+5,解得,,,则该抛物线与x轴的左交点为(+1,0),∵﹣1<+1<﹣2,n≤x1≤n+1,(n为整数),∴n=﹣1.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23、(1)45;(2)25°;(3)【解析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论