河南省濮阳市第六中学2022年数学九年级第一学期期末调研模拟试题含解析_第1页
河南省濮阳市第六中学2022年数学九年级第一学期期末调研模拟试题含解析_第2页
河南省濮阳市第六中学2022年数学九年级第一学期期末调研模拟试题含解析_第3页
河南省濮阳市第六中学2022年数学九年级第一学期期末调研模拟试题含解析_第4页
河南省濮阳市第六中学2022年数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.-7 B.7 C.3 D.-32.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.3.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²4.在一个不透明的袋中装有个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在左右,则袋中红球大约有()A.个 B.个 C.个 D.个5.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或16.下列一元二次方程,有两个不相等的实数根的是()A. B.C. D.7.如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.8.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m9.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是()A. B.1:3 C. D.1:210.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.11.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.112.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3二、填空题(每题4分,共24分)13.已知cos(a-15°)=,那么a=____________14.抛物线y=x2+2x+3的顶点坐标是_____________.15.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.16.已知中,,,,,垂足为点,以点为圆心作,使得点在外,且点在内,设的半径为,那么的取值范围是______.17.如图,在中,,,,是上一点,,过点的直线将分成两部分,使其所分成的三角形与相似,若直线与另一边的交点为点,则__________.18.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的20.(8分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.(1)求该抛物线的解析式与顶点的坐标.(2)试判断的形状,并说明理由.(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.22.(10分)如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.23.(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.24.(10分)已知正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG,(1)如图1,求证:EG=CG;(2)将图1中的ΔBEF绕点B逆时针旋转45°,如图2,取DF的中点G,连接EG,CG.问((3)将图1中的ΔBEF绕点B逆时计旋转任意角度,如图3,取DF的中点G,连接EG,CG.问(25.(12分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.26.如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,(1)求证:直线CD是⊙O的切线.(2)求证:△FEC是等腰三角形

参考答案一、选择题(每题4分,共48分)1、B【解析】解:∵m、n是一元二次方程x2-5x-2=0的两个实数根,∴m+n=5,mn=-2,∴m+n-mn=5-(-2)=1.故选A.2、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.3、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.4、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x个,由题意得解得x=10,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.6、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案.【详解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有两个相等的实数根,不符合题意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有两个不相等的实数根,符合题意,C.方程可变形为(x+1)2=-1<0,故方程没有实数根,不符合题意,D.方程中,△=(-2)2-4×1×3=-8<0,故方程没有实数根,不符合题意,故选:B.【点睛】本题考查一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),根的判别式为△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.7、B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到•5t•5t﹣•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴•5t•5t﹣•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.8、A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.9、A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.【详解】解:根据题意,某人走的水平距离为:,∴坡度;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.10、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.11、B【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选B.【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.12、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.二、填空题(每题4分,共24分)13、45°【分析】由题意直接利用特殊角的三角函数值,进行分析计算进而得出答案.【详解】解:∵,∴a-15°=30°,∴a=45°.故答案为:45°.【点睛】本题主要考查特殊角的三角函数值,牢记是特殊角的三角函数值解题的关键.14、(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.15、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【点睛】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.16、【分析】先根据勾股定理求出AB的长,进而得出CD的长,再求出AD,BD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,

∴AB==1.

∵CD⊥AB,∴CD=.

∵AD•BD=CD2,

设AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.

∵点A在圆外,点B在圆内,∴BD<r<AD,

∴r的范围是,

故答案为:.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.17、1,,【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DCP∽△BCA∴即,解得DP=如图,当∠CPD=∠B,且∠C=∠C时,∴△DCP∽△ACB∴即,解得DP=故答案为1,,.【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.18、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【点睛】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.三、解答题(共78分)19、(1)图详见解析,E(3,3),F(3,﹣1);(2)详见解析.【分析】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,然后写出E、F的坐标即可;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到.【详解】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,如图即为所求,点E、F的坐标为;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到,如图即为所求.【点睛】本题考查了图形的旋转、位似中心图形的画法,掌握理解旋转的定义和位似中心的定义是解题关键.20、(1),;(2)是直角三角形,理由见解析;(3)存在,.【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标.(2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可.(3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标.【详解】(1)设抛物线的解析式为.由抛物线与y轴交于点,可知即抛物线的解析式为把代入解得∴抛物线的解析式为∴顶点D的坐标为(2)是直角三角形.过点D分别作x轴、y轴的垂线,垂足分别为E、F在中,∴在中,∴在中,∴∴∴是直角三角形.(3)连接AC,根据两点的距离公式可得:,则有,可得,得符合条件的点为.过A作交y轴正半轴于,可知,求得符合条件的点为过C作交x轴正半轴于,可知,求得符合条件的点为∴符合条件的点有三个:.【点睛】本题考查了抛物线的综合问题,掌握抛物线的性质以及解法是解题的关键.21、(1)k=32;(2)菱形ABCD平移的距离为.【分析】(1)由题意可得OD=5,从而可得点A的坐标,从而可得k的值;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,由题意可知D’的纵坐标为3,从而可得横坐标,从而可知平移的距离.【详解】(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,过点D’做x轴的垂线,垂足为F’.∵DF=3,∴D’F’=3,∴点D’的纵坐标为3,∵点D’在的图象上,∴3=,解得=,即∴菱形ABCD平移的距离为.考点:1.勾股定理;2.反比例函数;3.菱形的性质;4.平移.22、(1)见解析;(2)见解析.【分析】(1)由AB=CD知,即,据此可得答案;(2)由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】证明(1)∵AB=CD,∴,即,∴;(2)∵,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.23、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,

∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD=(AD+BC)×AB=×(6+12)×12=1.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.24、(1)见解析;(2)见解析;(3)见解析.【解析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【详解】(1)在RtΔFCD中,G为DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如图②,(1)中结论仍然成立,即EG=CG.

理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

∴∠AMG=∠DMG=90°.

∵四边形ABCD是正方形,

∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.

在△DAG和△DCG中,

AD=CD∠ADG=∠CDGDG=DG,

∴△DAG≌△DCG(SAS),

∴AG=CG.

∵G为DF的中点,

∴GD=GF.

∵EF⊥BE,

∴∠BEF=90°,

∴∠BEF=∠BAD,

∴AD∥EF,

∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,

∴△DMG≌△FNG(ASA),

∴MG=NG.

∵∠DA∠AMG=∠N=90°,

∴四边形AENM是矩形,

∴AM=EN,

在△AMG和△ENG中,

AM=EN∠AMG=∠ENGMG=NG,

∴△AMG≌△ENG(SAS),

∴AG=EG,

∴EG=CG;

(3)如图③,(1)中的结论仍然成立.

理由:过F作CD的平行线并延长CG交于M点,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论