数分答案-9到22补充包_第1页
数分答案-9到22补充包_第2页
数分答案-9到22补充包_第3页
数分答案-9到22补充包_第4页
数分答案-9到22补充包_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十四章级 三角级数与级(1)sinxsin2x,sinnx,是[0(2)sinxsin3x,sin2n1)x,是[0

上的正交系;1cosxcos2x,cosnx,是[01,sinxsin2x,sinnx,不是[0上的正交系.证明(1)m,nN,mn,有sinmxsinnxdx1[cos(mn)xcos(m 21

sin(mn)x

sin(mn)x

]0m m sinxsin2x,sinnx,是[0(2)knNkn2sin(2k1)xsin(2n1)xdx

2[cos2(kn)xcos2(kn012

k

1

00

sinxsin3x,sin2n1)x,

[0

2(3)由于m,nN,mncosmxcosnxdx1[cos(mn)xcos(m 21

sin(mn)x

sin(mn)x

]0nN

m

m 0cosnxdxnsinnx

0故1cosx,cos2x,cosnx,是[0 (4)sinxdxcos

201,sinxsin2x,sinnx,不是 [0上的正交求下列周期为2FouriernnPn(x(aicosixbisinixf(x)x3(x)f(x)cosx2f(x)eax(x)f(x)sin (x)f(x)xcosx(x)f(x)x0

x0,0xf(x)2x2(x)f(x)sgncosx(10)f(x)

2

(0x2)解(1)1 0Pn(x)dxa022a01

P(x)coskxdxak

kxdxak

0kn

kn1

P(x)coskxdxbk

kxdxbk

0kn

knPn(xFouriernkP(x)~0(coskxnk

sinkx)a(acoskx

k

nkknk

1x3coskxdx0,k0,1,2,, b1x3sinkxdx2(1)k1(26),k1,2,, kf(xx3~2(1)n126sin

(x)n1 n2f(x是偶函数,故bn0n1,2.1 a0cos2dx1

(1)n1ancos2cosnxdx(4n2

,n1,2,,f(x)cosx~2

2

n14n1 1

2

ea)

a0a0f(x)dx

dx2

a0 (1)k

a

f(x)coskxdx

eaxcoskxdx(a2k2)

) a0

0

a0 (1)k

b

f(x)sinkxdx

eaxsinkxdx(a2k2)

) a0

0

a0k1,2,.所以,当x时 f(x)eax~ash(a)sh(a)a2k2(acoskxksinkx),a01

k

a0f(x是偶函数,故bn0n1,2,2 a00sinxdx1

n12 an

sinxcosnxdx2[(1)n1,

n1(n2f(x)sinx~2

1cosx

(1)n12

(x

n1f(x是奇函数,故an0n01,2,1

n12 1 bn0xcosxsinnxdx0x[sin(n1)xsin(n1)x]dx2(1)n

,n2n21n1,2,. (1)nf(x)xcosx~2sinx2n21sinnx

(x1 1 a0f(x)dx

xdx 21 1

(1)n1anf(x)cosnxdx

xcosnxdx

1 1

bnf(x)sinnxdx

xsinnxdx n因此f(x)x

x0,~

(1)n1 cosnx sinnx)0

0x

f(x为偶函数,故bn0n1,2,a2(2x2)dx32 2

an0

x)cosnxdx f(x)

~38

n2

(xf(x)sgncosx为偶函数,故bn0n1,2,2 a0

sgncosxdx (2dx(1)dx)0 2

an

sgncosxcosnxdx (2cosnxdx(1)cosnxdx)

(1)k

n2k1(2k

n2k

(k1,2,)4kf(x~2k1cos(2k1)xk1

12a0

f(x)dx

dx0212f(x)cosnxdx

2xcosnxdx0,n1,2,,

12f(x)sinnxdx

2xsinnxdx1,n1,2,,

所以,f(x)

(0x2) n1f(x以2为周期,在[(1)f(x)在[上满足f(x)f(x)a2m1b2m10m1,2,(2)如果函数

f(x)在[上满足f(x)f(x)a2mb2m0m1,2,1 证明(1)anf(xcosnxdx(f(xcosnxdx

f(x)cos00

010

f(x)cosnxdx(1)n

f(t)cos 1[1(1)n

f(x)cosnxdx 因此,当n2m1 1[1(1)2m1]

f(x)cos(2m1)xdx0,m1,2,

b1[1(1)n]

f(x)sinnxdx 所以,当n2m1

1[1(1)2m1]

f(x)sin(2m1)xdx0,m1,2, 1

0(2)anf(x)cosnxdx(f(x)cosnxdx0

f(x)cos00

1

f(x)cosnxdx(1)n

f(t)cos 1[1(1)n

f(x)cosnxdx 故当n2m时 1[1(1)2m]

f(x)cos2mxdx0,m1,2,

b1[1(1)n]

f(x)sinnxdx 因此,当n2m时,得 1[1(1)2m]

f(x)sin2mxdx0,m1,2,

级数的收敛(1)f(x)xsinx,x[,x2(2)f(x)

x[0,x[,解(1)f(x在(可微,而在(处处连续,故在[]f(x收Fourierf(xbn0n1,2,2 2a00f(x)dx

xsinxdx2a

f(x)cosnxdx

xsinxcos

xsin2xdx

n

n

1

22

n1 2所以,f(x)xsinx1 cosx2

cosnx,x[,n210(2)a1f(x)dx1 dxx2dx)1120 1

0anf(x)cosnxdx(cosnxdx00

cosnxdx) b

f

nxdx

2

)]

n1,2,,f(x)

26

cosnx

2

1)]sinnx}f(x在(f(00)f(02

102

f(0)

f(0)f(0)

1,2f(x)

26

cosnx

2

1)]sinnx}x(,0)(0,)

x

(1)n1sinn

(x)用逐项积分法求x2x3x4在(,中的Fourier展开式 n求级数 n

4nn1

(1)n1

解(1)2

0xdxnn

0sinnxdx nn

cosnx nn

n2

cosnx6

,x[,x2

3

,x[,3

0

x2dx x322

(1)n1sinnx

2(1)n1(

)sinnx,x(,)22

n

(

66xx4

0

3dx

(n

(

6)cosn

,x[,x423

8

,x[,(2)

(

1

,故只须求出

n

n1n

n1

n1n4x

,注意到

1 n1

1 ,n1

7

7n n

3(1)在(f(xexFourier 1求级数 21解(1)a1exdx1(ee 1

an

cosnxdx (e1

),n1,2,,1

an

sinnxdx

1

(e

),n1,2,,

所以f(x

(e

) 2(e11

f(x)ex在(

f(x)

(e

) 2(e11

)(cosnxnsinnx),x(,)(2)x0,1e01sh2sh , n11n2

1(11) 1.n11n 2 e f(x在[f()

f(,anbnf(xFouriera00,annbn,bn

(n1,2,)1 证明a0

f(x)dx

f

0a1f(x)cosnxdx1cosnxdf n 1 f(x)cos

f(x)sinnxdxn

f(x)sinnxdxnbnb1f(x)sinnxdx1sinnxdf n 1 f(x)sin

f(x)cosnxdxn

f(x)cosnxdxnan(n1,2,)

a0

cosnx

中的系数anbnmax{n3a

nn,nn

}MMnn证明因为max{nn

,

M

M

M,对一切n

nnnMn bMna0nnnMn

cosnx

sinnx

ancosnxbnsinnxxancosnxbnsinnx

2M由于级数2MMa0

nncosnxnn

sinnx在(n1 f(x,则由于逐次求导后的级数(nansinnxnbncosnx足nansinnxnbncosnxn(

bn)

,x(,)而级数

2M

sinnx

cosnx在(f(x在(f(x)(nansinnxnbncosnx)nnansinnxnbncosnx在(f(x在(设

(x)a0 k

coskx

T(x) T(x

sin(n12

dt 2

2证明象§14.12(1)类似地计算可得Tn(xFouriera0a0

ak

knkn

bk0

knkn

n1,2,,因而Tn(x)FouriernT(x)a0n k

coskx

而Tn(xFourier系数的前nT(x) T(x

sin(n12

dt 2

2f(x以2为周期,在(0,2bn0(n0证明f(xn0有

f(xsinnxdx存在.将[]n1 1

kbn f(x)sinnxdx

n2f(x)sin k

(kn1 (k1)

k 2nf(x)sinnxdx

f(x)sin

k 21 (k1) (k1) 2nf(x)sinnxdx 2nf(t

x)sinntdt]k

n

nnnxtn

1 (k1) bn 2n[f(x)f(x

k

nnnf(x2为周期,在(0,2)f(xf(x)0n[k12k1)2上sinnx0 非负,因而bn0(n0f(x以2

(02f(xan0(n0证明n0a12f(x)cos

f(x)dsin

n1(f(x)sinnx22f(x)sinnxdx)12[f(x)]sinnxdx nf(x2为周期,在(0,2上单调上升有界,故f(x2(0,2上单调减少有界,直接由上题结论,即知an0(n0f(xx0点满足Lipschitzf(xx0点连续.给出一个(0)证明f(xx0点满足阶(0Lipschitz00M0xx00 f(x)f(x)Mxx 因此,不妨设

x

00

f(x)f(x)Mxx

x

,取

,

0,x

M 0M f(x)f(x0)f(xx0

x0, lnf(x)lnln0

x

则由于

f(x)

0

f(0

f(xx连续.但0,由于limx

lnx0,所以

xln

,故

0,0当0

x

M

0Mx0

f(x)f(0)Mx01xln1ln对一切0xf(xx0Lipschitz1xln1lnf(x是以2[Sn(xf(x级数的前nnS(x)a0n k

coskx

sinkx)4f(x2t)f(x02 Sn(x)2 Dn(2t)dt,02Dn(tDirichlet证明

(x)

[f(xt)f(x

sin(n1

2sin2 [f(xt)f(x

t

2 [f(x2u)f(x2u)]D2 04f(x2t)f(x022 Dn(2t)dt.02f(x以2为周期,在(Fourierx0Sn(x0)f(x0)(n)证明f(x是以2Fourierx0Fourierx0S limS(x)S

n

)lim1nnn1k0

Sk

)S Fejerlim(x

f(x0,因此S

f(x0,即limSn(x0)n

f(x0)f(x以2Fourier系数全为0f(x)0证明x0f(xFourier系数全为0Fourierx00,由上题结论知其Fourierx0点又收敛于x0f(x)0

f(x0,因此f(x00,由f(x以2为周期,在[x0t

f(x0t)f(x0t)2limn(x0)Lf(xx0连续,则limn(x0)

f(x0n(x)1nn1

Sk(x)

证明Fejern(x0)

1

Sk(x0)

f(x0

n1tn1

2(n1)

sin

n1t

n1 t

f(x0t) dt

f(x0t) dt2(n1)

sin

sin

n1u

n1 t

f(x0 du

f(x0t) dt2(n1)

sin

sin

f

t)

f

n1t

dt2(n1)

sin 由Fejer核的性质

0

n1t2t

0

n1t2t

dtL

(n

(n

f

t)f

n1t

)L

L

dt (n1)0

0t

f(x0tf(x0t)L,知0(,使得只要20t

Lf(xf(x0t)f(x02

f

t)f

n1t

)L

L (n1)

f

t)f

n1t L (n1)

sin f

t)f

n1t L (n1)

sin

n1t2

n1tt Ⅰ(n1)0

2

dt2(n1)0

2

dt t2t

2

2t,因而当t[22时,22

2

,由此得到当t

2f

t)f

L

(n

t

f

t)f

2 n n

L2

dtf(x在[绝对可积,因而M0f

t)f

L2

M1M (n1)32(n1)3Ⅱn(n1)32(n1)3 N2M,则当nN

,从而当nN

(x)LⅠ+Ⅱ

所以,limn(x0Lf(xx0Ln

f(x0limn(x0)n

f(x0) 任意区间上的级在区间(02lf(x)A,0xl0,lxf(x)xcosx,(,) f(x)x,(0,l) xf(x) 1

0x1x2,3x

2xa12l

1

解(1)

l

co(s)xdx

l0Acos

xdx

nb12lf(x)sinnxdx

lAsinnxdxA(1(1)n),n1,2, l

l f(x)~A

A(1(1)n)sinnxA

2 sin(2n1)x. n1 n1(2n f(x在(02lf(x)A

2 sin(2n1)x,

x(0,l)(l,2l) n1(2n 由于f(x)xcosx是 2

的奇函数,因此

0,n0,1,2,.4 400bn2f(x)sin2nxdx2xcosxsin002 02x[sin(2n1)xsin(2n1)x]dx0

(4n

,n1,2,f(x在(2

216 (1)n1 f(x)(4n21)2sin2nx,x(2,2)2 2a0l0f(x)dxl0xdxl2lf(x)cos2nxdx2lxcos2nxdx0,n1,2, l

l 2lf(x)sin2nxdx

lxsin2nxdx

,n1,2, l

l f(x在(0lf(x)

l

1sin2nx,x(0,l)22

n1 a030f(x)dx3(0xdx11dx2(3x)dx)323f(x)cos2n 3 2(1xcos2nxdx2cos2nxdx3(3x)cos2n3

sin2n3

3n2

1)3

n1,2,23f(x)sin2n 3 (xsin12xdx 2cos(xsin12xdx 2cos133 n233f(x在[03

,n1,2,f(x)2{[2sin

(cos

1)]cos2n n2

2cos2n

sin2n)sin2n n2 2[2sin2n(x1) cos2n(x1)3 cos2nx],

n2

n2 x[0,f(x)cosxf(x)x[x].解(1)这是周期为f(x在(连续,逐段可微,又是偶函数,故bn0n1,2.4 4

4 000a02f(x)dx2cosxdx2cosxdx0004 400an2f(x)cos2nxdx2cosxcos002 02[cos(2n1)xcos(2n1)x]dx0

,n1,2,

f(x)cosx

2

x(,) n14n1 a020(x[x])dx20xdx an20(x[x])cos2nxdx20xcos2nxdx0,n1,2, bn20(x[x])sin2nxdx20xsin2nxdx

,n1,2,f(x)x[x]111sin , )且 Z n1(1)f(x)sinx,0xx3(2)f(x)x3

0x22x4解Fourier2 a00sinxdx0

n1a2sinxcosnxdx

n1,2,0

[(1)n11],n1f(x)sinx

2

2

cosnx

24

cos2nx,x[0,]

n

n14n1222 a040f(x)dx2(0(1x)dx2(x3)dx)0a24f(x)cosnxdx1(2(1x)cosnxdx

4(x3)cosn 4

2

n2

[1(1)n],

n1,2,f(x) [1(1)n]cosnx4

1cosnx,x(0,4)n1n2

n1n2 xf(x)2

,0xf(x)x2,0x2解(1)Fourierb

f(x)sinnxdx

[sin(n1)xsin(n

(4n2

n1,2,

f(x)cosx4 nx , n14n22

2

bn2

f(x)

2xdx0

xdx

n3

1]n1,2,f(x)x2{8(1)n116[(1)n1]}sinnn1

n3 8

1[n22(1)n12(1)n2]sinnx,0x2n1 f(x)(x1)2在(0126(11 解Fourier

)a21f(x)dx21(x1)2dx21 11an20f(x)cosnxdx1

1)2cosnxdx

n2

,n1,2,

f(x)(x1)2141cos 2n1n2既使扩充f(x)的定义于()成为偶延拓后的周期为2F(xFourierF(xF(xF(0)f(0)1x0就有1141 .,即 .

n1n

n1n2f(xFourier

0x2f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论