版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十四章级 三角级数与级(1)sinxsin2x,sinnx,是[0(2)sinxsin3x,sin2n1)x,是[0
上的正交系;1cosxcos2x,cosnx,是[01,sinxsin2x,sinnx,不是[0上的正交系.证明(1)m,nN,mn,有sinmxsinnxdx1[cos(mn)xcos(m 21
sin(mn)x
sin(mn)x
]0m m sinxsin2x,sinnx,是[0(2)knNkn2sin(2k1)xsin(2n1)xdx
2[cos2(kn)xcos2(kn012
k
1
00
sinxsin3x,sin2n1)x,
[0
2(3)由于m,nN,mncosmxcosnxdx1[cos(mn)xcos(m 21
sin(mn)x
sin(mn)x
]0nN
m
m 0cosnxdxnsinnx
0故1cosx,cos2x,cosnx,是[0 (4)sinxdxcos
201,sinxsin2x,sinnx,不是 [0上的正交求下列周期为2FouriernnPn(x(aicosixbisinixf(x)x3(x)f(x)cosx2f(x)eax(x)f(x)sin (x)f(x)xcosx(x)f(x)x0
x0,0xf(x)2x2(x)f(x)sgncosx(10)f(x)
2
(0x2)解(1)1 0Pn(x)dxa022a01
P(x)coskxdxak
kxdxak
0kn
kn1
P(x)coskxdxbk
kxdxbk
0kn
knPn(xFouriernkP(x)~0(coskxnk
sinkx)a(acoskx
k
nkknk
1x3coskxdx0,k0,1,2,, b1x3sinkxdx2(1)k1(26),k1,2,, kf(xx3~2(1)n126sin
(x)n1 n2f(x是偶函数,故bn0n1,2.1 a0cos2dx1
(1)n1ancos2cosnxdx(4n2
,n1,2,,f(x)cosx~2
2
n14n1 1
2
ea)
a0a0f(x)dx
dx2
a0 (1)k
a
f(x)coskxdx
eaxcoskxdx(a2k2)
) a0
0
a0 (1)k
b
f(x)sinkxdx
eaxsinkxdx(a2k2)
) a0
0
a0k1,2,.所以,当x时 f(x)eax~ash(a)sh(a)a2k2(acoskxksinkx),a01
k
a0f(x是偶函数,故bn0n1,2,2 a00sinxdx1
n12 an
sinxcosnxdx2[(1)n1,
n1(n2f(x)sinx~2
1cosx
(1)n12
(x
n1f(x是奇函数,故an0n01,2,1
n12 1 bn0xcosxsinnxdx0x[sin(n1)xsin(n1)x]dx2(1)n
,n2n21n1,2,. (1)nf(x)xcosx~2sinx2n21sinnx
(x1 1 a0f(x)dx
xdx 21 1
(1)n1anf(x)cosnxdx
xcosnxdx
1 1
bnf(x)sinnxdx
xsinnxdx n因此f(x)x
x0,~
(1)n1 cosnx sinnx)0
0x
f(x为偶函数,故bn0n1,2,a2(2x2)dx32 2
an0
x)cosnxdx f(x)
~38
n2
(xf(x)sgncosx为偶函数,故bn0n1,2,2 a0
sgncosxdx (2dx(1)dx)0 2
an
sgncosxcosnxdx (2cosnxdx(1)cosnxdx)
(1)k
n2k1(2k
n2k
(k1,2,)4kf(x~2k1cos(2k1)xk1
12a0
f(x)dx
dx0212f(x)cosnxdx
2xcosnxdx0,n1,2,,
12f(x)sinnxdx
2xsinnxdx1,n1,2,,
所以,f(x)
(0x2) n1f(x以2为周期,在[(1)f(x)在[上满足f(x)f(x)a2m1b2m10m1,2,(2)如果函数
f(x)在[上满足f(x)f(x)a2mb2m0m1,2,1 证明(1)anf(xcosnxdx(f(xcosnxdx
f(x)cos00
010
f(x)cosnxdx(1)n
f(t)cos 1[1(1)n
f(x)cosnxdx 因此,当n2m1 1[1(1)2m1]
f(x)cos(2m1)xdx0,m1,2,
b1[1(1)n]
f(x)sinnxdx 所以,当n2m1
1[1(1)2m1]
f(x)sin(2m1)xdx0,m1,2, 1
0(2)anf(x)cosnxdx(f(x)cosnxdx0
f(x)cos00
1
f(x)cosnxdx(1)n
f(t)cos 1[1(1)n
f(x)cosnxdx 故当n2m时 1[1(1)2m]
f(x)cos2mxdx0,m1,2,
b1[1(1)n]
f(x)sinnxdx 因此,当n2m时,得 1[1(1)2m]
f(x)sin2mxdx0,m1,2,
级数的收敛(1)f(x)xsinx,x[,x2(2)f(x)
x[0,x[,解(1)f(x在(可微,而在(处处连续,故在[]f(x收Fourierf(xbn0n1,2,2 2a00f(x)dx
xsinxdx2a
f(x)cosnxdx
xsinxcos
xsin2xdx
n
n
1
22
n1 2所以,f(x)xsinx1 cosx2
cosnx,x[,n210(2)a1f(x)dx1 dxx2dx)1120 1
0anf(x)cosnxdx(cosnxdx00
cosnxdx) b
f
nxdx
2
)]
n1,2,,f(x)
26
cosnx
2
1)]sinnx}f(x在(f(00)f(02
102
f(0)
f(0)f(0)
1,2f(x)
26
cosnx
2
1)]sinnx}x(,0)(0,)
x
(1)n1sinn
(x)用逐项积分法求x2x3x4在(,中的Fourier展开式 n求级数 n
4nn1
(1)n1
解(1)2
0xdxnn
0sinnxdx nn
cosnx nn
n2
cosnx6
,x[,x2
3
,x[,3
0
x2dx x322
(1)n1sinnx
2(1)n1(
)sinnx,x(,)22
n
(
66xx4
0
3dx
(n
(
6)cosn
,x[,x423
8
,x[,(2)
(
1
,故只须求出
n
n1n
n1
n1n4x
,注意到
1 n1
1 ,n1
7
7n n
3(1)在(f(xexFourier 1求级数 21解(1)a1exdx1(ee 1
an
cosnxdx (e1
),n1,2,,1
an
sinnxdx
1
(e
),n1,2,,
所以f(x
(e
) 2(e11
f(x)ex在(
f(x)
(e
) 2(e11
)(cosnxnsinnx),x(,)(2)x0,1e01sh2sh , n11n2
1(11) 1.n11n 2 e f(x在[f()
f(,anbnf(xFouriera00,annbn,bn
(n1,2,)1 证明a0
f(x)dx
f
0a1f(x)cosnxdx1cosnxdf n 1 f(x)cos
f(x)sinnxdxn
f(x)sinnxdxnbnb1f(x)sinnxdx1sinnxdf n 1 f(x)sin
f(x)cosnxdxn
f(x)cosnxdxnan(n1,2,)
a0
cosnx
中的系数anbnmax{n3a
nn,nn
}MMnn证明因为max{nn
,
M
M
M,对一切n
nnnMn bMna0nnnMn
cosnx
sinnx
ancosnxbnsinnxxancosnxbnsinnx
2M由于级数2MMa0
nncosnxnn
sinnx在(n1 f(x,则由于逐次求导后的级数(nansinnxnbncosnx足nansinnxnbncosnxn(
bn)
,x(,)而级数
2M
sinnx
cosnx在(f(x在(f(x)(nansinnxnbncosnx)nnansinnxnbncosnx在(f(x在(设
(x)a0 k
coskx
T(x) T(x
sin(n12
dt 2
2证明象§14.12(1)类似地计算可得Tn(xFouriera0a0
ak
knkn
bk0
knkn
n1,2,,因而Tn(x)FouriernT(x)a0n k
coskx
而Tn(xFourier系数的前nT(x) T(x
sin(n12
dt 2
2f(x以2为周期,在(0,2bn0(n0证明f(xn0有
f(xsinnxdx存在.将[]n1 1
kbn f(x)sinnxdx
n2f(x)sin k
(kn1 (k1)
k 2nf(x)sinnxdx
f(x)sin
k 21 (k1) (k1) 2nf(x)sinnxdx 2nf(t
x)sinntdt]k
n
nnnxtn
1 (k1) bn 2n[f(x)f(x
k
nnnf(x2为周期,在(0,2)f(xf(x)0n[k12k1)2上sinnx0 非负,因而bn0(n0f(x以2
(02f(xan0(n0证明n0a12f(x)cos
f(x)dsin
n1(f(x)sinnx22f(x)sinnxdx)12[f(x)]sinnxdx nf(x2为周期,在(0,2上单调上升有界,故f(x2(0,2上单调减少有界,直接由上题结论,即知an0(n0f(xx0点满足Lipschitzf(xx0点连续.给出一个(0)证明f(xx0点满足阶(0Lipschitz00M0xx00 f(x)f(x)Mxx 因此,不妨设
x
00
f(x)f(x)Mxx
x
,取
,
0,x
M 0M f(x)f(x0)f(xx0
x0, lnf(x)lnln0
x
则由于
f(x)
0
f(0
f(xx连续.但0,由于limx
lnx0,所以
xln
,故
0,0当0
x
M
0Mx0
f(x)f(0)Mx01xln1ln对一切0xf(xx0Lipschitz1xln1lnf(x是以2[Sn(xf(x级数的前nnS(x)a0n k
coskx
sinkx)4f(x2t)f(x02 Sn(x)2 Dn(2t)dt,02Dn(tDirichlet证明
(x)
[f(xt)f(x
sin(n1
2sin2 [f(xt)f(x
t
2 [f(x2u)f(x2u)]D2 04f(x2t)f(x022 Dn(2t)dt.02f(x以2为周期,在(Fourierx0Sn(x0)f(x0)(n)证明f(x是以2Fourierx0Fourierx0S limS(x)S
n
)lim1nnn1k0
Sk
)S Fejerlim(x
f(x0,因此S
f(x0,即limSn(x0)n
f(x0)f(x以2Fourier系数全为0f(x)0证明x0f(xFourier系数全为0Fourierx00,由上题结论知其Fourierx0点又收敛于x0f(x)0
f(x0,因此f(x00,由f(x以2为周期,在[x0t
f(x0t)f(x0t)2limn(x0)Lf(xx0连续,则limn(x0)
f(x0n(x)1nn1
Sk(x)
证明Fejern(x0)
1
Sk(x0)
f(x0
n1tn1
2(n1)
sin
n1t
n1 t
f(x0t) dt
f(x0t) dt2(n1)
sin
sin
n1u
n1 t
f(x0 du
f(x0t) dt2(n1)
sin
sin
f
t)
f
n1t
dt2(n1)
sin 由Fejer核的性质
0
n1t2t
0
n1t2t
dtL
(n
(n
f
t)f
n1t
)L
L
dt (n1)0
0t
f(x0tf(x0t)L,知0(,使得只要20t
Lf(xf(x0t)f(x02
f
t)f
n1t
)L
L (n1)
f
t)f
n1t L (n1)
sin f
t)f
n1t L (n1)
sin
n1t2
n1tt Ⅰ(n1)0
2
dt2(n1)0
2
dt t2t
2
2t,因而当t[22时,22
2
,由此得到当t
2f
t)f
Ⅱ
L
(n
t
f
t)f
2 n n
L2
dtf(x在[绝对可积,因而M0f
t)f
L2
M1M (n1)32(n1)3Ⅱn(n1)32(n1)3 N2M,则当nN
,从而当nN
(x)LⅠ+Ⅱ
所以,limn(x0Lf(xx0Ln
f(x0limn(x0)n
f(x0) 任意区间上的级在区间(02lf(x)A,0xl0,lxf(x)xcosx,(,) f(x)x,(0,l) xf(x) 1
0x1x2,3x
2xa12l
1
解(1)
l
co(s)xdx
l0Acos
xdx
nb12lf(x)sinnxdx
lAsinnxdxA(1(1)n),n1,2, l
l f(x)~A
A(1(1)n)sinnxA
2 sin(2n1)x. n1 n1(2n f(x在(02lf(x)A
2 sin(2n1)x,
x(0,l)(l,2l) n1(2n 由于f(x)xcosx是 2
的奇函数,因此
0,n0,1,2,.4 400bn2f(x)sin2nxdx2xcosxsin002 02x[sin(2n1)xsin(2n1)x]dx0
(4n
,n1,2,f(x在(2
216 (1)n1 f(x)(4n21)2sin2nx,x(2,2)2 2a0l0f(x)dxl0xdxl2lf(x)cos2nxdx2lxcos2nxdx0,n1,2, l
l 2lf(x)sin2nxdx
lxsin2nxdx
,n1,2, l
l f(x在(0lf(x)
l
1sin2nx,x(0,l)22
n1 a030f(x)dx3(0xdx11dx2(3x)dx)323f(x)cos2n 3 2(1xcos2nxdx2cos2nxdx3(3x)cos2n3
sin2n3
3n2
1)3
n1,2,23f(x)sin2n 3 (xsin12xdx 2cos(xsin12xdx 2cos133 n233f(x在[03
,n1,2,f(x)2{[2sin
(cos
1)]cos2n n2
2cos2n
sin2n)sin2n n2 2[2sin2n(x1) cos2n(x1)3 cos2nx],
n2
n2 x[0,f(x)cosxf(x)x[x].解(1)这是周期为f(x在(连续,逐段可微,又是偶函数,故bn0n1,2.4 4
4 000a02f(x)dx2cosxdx2cosxdx0004 400an2f(x)cos2nxdx2cosxcos002 02[cos(2n1)xcos(2n1)x]dx0
,n1,2,
f(x)cosx
2
x(,) n14n1 a020(x[x])dx20xdx an20(x[x])cos2nxdx20xcos2nxdx0,n1,2, bn20(x[x])sin2nxdx20xsin2nxdx
,n1,2,f(x)x[x]111sin , )且 Z n1(1)f(x)sinx,0xx3(2)f(x)x3
0x22x4解Fourier2 a00sinxdx0
n1a2sinxcosnxdx
n1,2,0
[(1)n11],n1f(x)sinx
2
2
cosnx
24
cos2nx,x[0,]
n
n14n1222 a040f(x)dx2(0(1x)dx2(x3)dx)0a24f(x)cosnxdx1(2(1x)cosnxdx
4(x3)cosn 4
2
n2
[1(1)n],
n1,2,f(x) [1(1)n]cosnx4
1cosnx,x(0,4)n1n2
n1n2 xf(x)2
,0xf(x)x2,0x2解(1)Fourierb
f(x)sinnxdx
[sin(n1)xsin(n
(4n2
n1,2,
f(x)cosx4 nx , n14n22
2
bn2
f(x)
2xdx0
xdx
n3
1]n1,2,f(x)x2{8(1)n116[(1)n1]}sinnn1
n3 8
1[n22(1)n12(1)n2]sinnx,0x2n1 f(x)(x1)2在(0126(11 解Fourier
)a21f(x)dx21(x1)2dx21 11an20f(x)cosnxdx1
1)2cosnxdx
n2
,n1,2,
f(x)(x1)2141cos 2n1n2既使扩充f(x)的定义于()成为偶延拓后的周期为2F(xFourierF(xF(xF(0)f(0)1x0就有1141 .,即 .
n1n
n1n2f(xFourier
0x2f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年车辆租赁托管协议
- 2024年劳动局劳动协议官方式
- 2024年度供货合作协议示例
- DB11∕T 1722-2020 水生态健康评价技术规范
- 2024年个人房产买卖协议样本
- 2024年汽车物流运输协议模板
- 第8课 三国至隋唐的文化(课件)-2024-2025学年统编版高一历史上册
- 2024年路缘石买卖协议模板
- 2024金融中介贷款代理业务协议样式
- 内蒙古自治区锡林郭勒盟2024-2025学年高一上学期11月期中 生物试题(含答案)
- 腺相关病毒操作手册
- 2020湖南湖南省建筑施工开工安全生产条件承诺书
- 英语语音教程ppt课件
- GS069电动工具直流调速电路
- 二十五项反措(汽机专业)
- (交通运输)智慧城市系列之智能交通系统(完整版)
- 全国教师信息管理系统信息变更修改操作方法
- 理想别墅的数学_Colin R Microsoft W
- 电流互感器选用参考
- 附件2:跨境业务人民币结算收款说明
- 污水处理厂350KW分布式光伏发电项目初步设计方案
评论
0/150
提交评论