版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1MEMSMadeEasy!Studentsarepresentedwithaspectsofgeneralproductionandmanufacturingofelectromechanicalsystemstoenablethemtobetterliaisewithandparticipateinthemanufacturingindustrysector.1MEMSMadeEasy!2MicroElectroMechanicalSystemsIntheUnitedStates,thetechnologyisknownasmicroElectroMechanicalsystems(MEMS);inEuropeitiscalledmicrosystemstechnology(MST).MEMSisaportfoliooftechniquesandprocessestodesignandcreateminiaturesystems;Itisaphysicalproductoftenspecializedanduniquetoafinalapplication-onecanseldombyagenericMEMSproductfromtheelectronicshop;MEMSisawayofmakingthings.Thesethingsmergethefunctionsofsensingandactuationwithcomputationandcommunicationtolocallycontrolphysicalparametersatthemicroscale.2MicroElectroMechanicalSystem3ThisSubjectisCalledMicroElectroMechanicalSystem(MEMS)intheUnitedStates.MicrosysteminEuropeMicromachinesinJapan.3ThisSubjectisCalledMicroEl4History1750sElectrostaticmotorsdemonstratedbyBenjaminFranklinandAndrewGordon.1824DiscoveryofSiliconbyBerzelius.1927 FieldeffecttransistorpatentedtoLilienfield.1947 Inventionofthetransistor(madefromgermanium).1954 PiezoresistiveeffectinGermaniumandSiliconinventedbyC.S.Smith.1958 Siliconstraingaugesavailableinthemarket.1961 SiliconpressuresensordemonstratedbyKulite1967 Surfacemicromachininginvented.1970 FirstsiliconaccelerometerdemonstratedbyKulite.1977 FirstcapacitivepressuresensordemonstratedinStanford.1980 SilicontorsionalScanningMirrordemonstratedbyK.E.Petersen.1982 Demonstrationofdisposablebloodpressuretransducer.4History1750sElectrostaticmo5History,Cont.1982 Activeon-chipsignalconditioning.1984 FirstpolysiliconMEMSdevice(Howe,Muller).1988 Rotaryelectrostaticsidedrivemotors(Fan,Tai,Muller).1989 Lateralcombdrive(Tang,Nguyen,Howe).1991 Polysiliconhinge(Pister,Judy,Burgett,Fearing).1992 Gratinglightmodulator(Solgaard,Sandejas,Bloom).1992 MCNCstartsMUMPS.1993DigitalmirrordisplaybyTexasInstruments1993 Firstsurfacemicromachinedaccelerometersold.1994 XeF2usedforMEMS.1999OpticalnetworkswitchbyLucentTechnologies.Adaptedfrom:VeljkoMilanovic,LectureNotesatBekerly5History,Cont.1982 Activeon-6WhatareMEMS?MEMSisaclassofsystemsthatarephysicallysmall.Thesesystemshavebothelectricalandmechanicalcomponents.MEMSoriginallyusedmodifiedintegratedcircuit(computerchip)fabricationtechniquesandmaterialstocreatetheseverysmallmechanicaldevices.Todaytherearemanymorefabricationtechniquesandmaterialsavailable.SensorsandactuatorsarethetwomaincategoriesofMEMS.Sensorsarenon-invasivewhileactuatorsmodifytheenvironment.Microsensorsareusefulbecausetheirphysicalsizeallowsthemtobelessinvasive.Microactuatorsareusefulbecausetheamountofworktheyperformontheenvironmentissmallandthereforecanbeveryprecise.6WhatareMEMS?MEMSisaclass7PrecisionEngineeredGearsareshownheretobefabricatedbyadeepX-raylithographyandelectrodepositionprocess.Eachgearis100micronstall,madeofnickel,andareheldtosubmicrondimensions.MEMScanbeusedtocreatepartsofsystemswherehightolerancesarenecessary.ThesegearsbridgethegapbetweenMEMSandtraditionallymachinedprecisecomponents.7PrecisionEngineeredGearsar8MagneticMicroMotorscanalsobefabricatedbyadeepX-raylithographyandelectrodepositionprocess.Therotorismagneticallysalienttoallowamagneticfieldappliedtoeachofthetwopolestocausetherotortoturn.Externalloadinggearshavebeenadded.Thismotorhasbeenusedtotestthefrictioningeartrainsbyusinganexternalmagneticfieldtodrivethesalientrotor.Thisisanexampleofarotationalactuator.
8MagneticMicroMotorscanals9But,NotOnlyMiniaturizationMEMSdevicesaremanufacturedinasimilarfashiontocomputermicrochips.Thebiggestadvantagehereisnotnecessarilythatthesystemcanbeminuaturized,butratherthatthelithographictechniquesthatnowmass-producethousandsofcomplexmicrochipssimultaneouslycanalsobeusedtomanufacturemechanicalsensorsandactuators.Asthepriceofthesecomponentsisreducedtonearlyzero,ashashappenedwithmicroprocessors,theycandeployedpervasively,revolutionizingfuturesocietytoagreaterextent,possibly,thaneventhemicroprocessor.
9But,NotOnlyMiniaturization10WhatareMicrosystems?
Amicrosystemisdefinedasanintelligentminiaturisedsystemcomprisingsensing,processingand/oractuatingfunctions.Thesewouldnormallycombinetwoormoreofthefollowing:electrical,mechanical,optical,chemical,biological,magneticorotherproperties,integratedontoasingleormultichiphybrid.Microsensorsdetectchangesintheparametertobecontrolled,electroniccontrollogicthenoperatesmicroactuatorsbasedoninformationfromthesensors,tobringtheparametertobecontrolledwithinthedesiredlimits.
LeveldemandedControlLogicCircuitActuatorParameterstobeControlledSensor10WhatareMicrosystems?
Amic11SensorsMicrosensorsmeasuretheenvironmentwithoutmodifyingit.Microsensorsareusefulbecausetheirsmallphysicalsizeallowsthemtobelessinvasiveandworkinsmallerareas.Sofar,microengineeringasamanufacturingtechnologyhasbeenappliedmostsuccessfullytosensors.Thepay-offintermsofminiaturization,improvedperformance,andreducedproductioncosthavetransformedthemarketinpressuresensorsinparticular.Microphones.Accelerometers.Vibrationanalyzers.Flowmeters.Gassensors.Radiationdetectors.Chemicalsensors.Ionsensors.11SensorsMicrosensorsmeasure12ComparisonFrom:/c1.res.ppt/ppt/g.tutorial/ppt.htm12ComparisonFrom:http://mems.13ActuatorsActuationreferstotheactofeffectingortransmittingmechanicalmotion,forces,andworkbyadeviceonitssurroundingsinresponsetotheapplicationofabiasvoltageorcurrent.Microactuatorsinteractwiththeenvironment.Thefirstapplicationsthatwereidentifiedformicroengineeringweresensors.Thenotionofusingthesetechniquesforactuatorshasdevelopedfromthem.Examplesofactuatorsnearoralreadyonthemarketarelistedbelow:MicropumpsPressurepulseinkjetactuatorsThermalinkjetsThermalprintheadsFluidicamplifiersOpticalcommunicationselementsScanningmirrors13ActuatorsActuationrefersto14MicrostructuresThereisadiverserangeofmechanicalobjectsthatfallintoneitherthesensornortheactuatorcategory.Theyarebestdescribedasmicrostructures.Theseitemsareoftennomorethanarraysofsimpleshapessuchasgrooves,holes,nozzles,gridsetc.Examplesinclude:MicrosievesOpticalelementsSiliconhybridcircuitboardsMicroelectroniccomponentcoolingSiliconvacuumelectronicvalvesFluidisotopeseparatorsMicroconnectors(electricalandoptical).
14MicrostructuresThereisadi15ApplicationAreasofMEMSInvasiveandnoninvasivebiomedicalsensorsMiniaturebiochemicalanalyticalinstrumentsCardiacmanagementsystems(e.g.,pacemakers,catheters)DrugdeliverysystemsNeurologicaldisordersEngineandpropulsioncontrolAutomotivesafety,braking,andsuspensionsystemsElectromechanicalsignalprocessingDistributedsensorsforcondition-basedmaintenanceandmonitoringstructuralhealthDistributedcontrolofaerodynamicandhydrodynamicsystems.15ApplicationAreasofMEMSInv16WhyisMEMSUseful?MEMSarephysicallysmall,thisisthereasonwhyMEMSisuseful.MEMSusedforsensorsisusefulbecausesmallsensorsinterferelesswiththeenvironmenttheyaremeasuringthanlargerdevices.Anarrayofsmallsensorscanalsobeusedforredundancy.MEMSisusefulforactuatorsbecausethemotiontheydelivercanbeveryprecise.MEMSdevicescanalsobeplacedinsmallspacessuchasinsideautomobileengines,smallappliances,andlivingorganismstomeasureand/oraffecttheirenvironment.16WhyisMEMSUseful?MEMSare17WhatisMicroengineering?Microengineeringreferstothetechnologiesandpracticeofmakingthreedimensionalstructuresanddeviceswithdimensionsintheorderofmicrometers.Thetwoconstructionaltechnologiesofmicroengineeringaremicroelectronicsandmicromachining.Microelectronics,producingelectroniccircuitryonsiliconchips,isaverywelldevelopedtechnology.Micromachiningisthenameforthetechniquesusedtoproducethestructuresandmovingpartsofmicroengineereddevices.OneofthemaingoalsofMicroengineeringistobeabletointegratemicroelectroniccircuitryintomicromachinedstructures,toproducecompletelyintegratedsystems(microsystems).Suchsystemscouldhavehavethesameadvantagesoflowcost,reliabilityandsmallsizeassiliconchipsproducedinthemicroelectronicsindustry.17WhatisMicroengineering?Mic18MicroengineeringEnablesTheproductionofsmaller,lighter,andfasterversionsofexistingmechanicaldevices,withincreaseddimensionalaccuracy,e.g.micromotors.Theproductionofsensors,mainlyexploitingtheelectromechanicalpropertiesofsilicon,whereelectricalcharacteristicschangeinresponsetoachangeinaparticularexternalparameter,e.g.temperature,pressure,acceleration,humidityandradiation.Theuseofmaterialsandprocessescommontointegratedmicroelectronicswithmicromechanicalcomponentsbringingimprovementsinperformanceandcost.Batchprocessingtofabricatelargevolumesofminiaturecomponentsatlowcost,e.g.inkjetnozzles.Theopportunitytoextendprocesstechnologytoincludematerialsandtechniquesnotusedinmicroelectronics,butwhichofferspecificadvantagestomicromechanicaldevices.Theeconomicintegratedmanufactureofcompletesystemstoincludesensing,computationandactuation.18MicroengineeringEnablesThe19MarketsforMicroengineeredProductsMicroengineeringnotonlyprovidesanewmanufacturingrouteforexistingproducts,butalso,importantly,allowsthecreationofcompletelynewproductsandnewmarkets.Microengineeringisalreadyestablishedinthesensormarket,providinglargevolumesoflowcostsensorstotheautomotiveindustry,andlowvolumehighperformance,smallandlightweightsensorstoaerospaceanddefence.Thesensormarketisexpectedtogrowsignificantlyinthenextfewyears,withexceptionalgrowthinthesub-categoryofminiaturizedsensors.TheprojectedMEMSmarketfortheyear2002isexpectedtoreach6.7B$.19MarketsforMicroengineered20SuccessfulApplicationsAutomotiveIndustry ManifoldairpressuresensorsAirBagSensorsHealthandMedicine
BloodPressureSensorsMuscleSimulatorDigitalMirrorDisplay
VideoProjectionSystemPrinters
HPandCanon.
20SuccessfulApplicationsAutom21From:/c1.res.ppt/ppt/g.tutorial/ppt.htm21From:http://mems.colorado.e22From:/c1.res.ppt/ppt/g.tutorial/ppt.htm22From:http://mems.colorado.e23/c1.res.ppt/ppt/g.tutorial/ppt.htm23/c1.24WhatisMicromachining?Micromachiningisthesetofdesignandfabricationtoolsthatpreciselymachineandformstructuresandelementsatascalebelowthelimitsofourhumanpreceptivefaculties-themicroscale.MicromachiningistheunderlyingofMEMSfabrication;itisthetoolboxofMEMS.ThemicromachiningistheUnderlyingofMEMSfabrication;itisthetoolboxofMEMS.Theberthofthefirstmicromachinedcomponentsdatesbackmanydecades,butitwasthewell-establishedintegratedcircuitindustrythatindirectlyplayedanindispensableroleinfosteringanenvironmentsuitableforthedevelopmentandgrowthofmicromachiningtechnologies.24WhatisMicromachining?Micro25JustReminderofMicroelectronicFabrication25JustReminderofMicroelectr26CommercialFabrication26CommercialFabrication27DeviceComplexitybyStructuralLayers27DeviceComplexitybyStructu28Commonprocessingtechniquesthatareusedtosculptmechanicalstructuresinclude:bulkmicromachining.Wafer-to-waferbonding.Surfacemicromachining.High-aspectratiomicromachining.28Commonprocessingtechniques29BulkMicromachiningBulkmicromachiningisthetermappliedtoavarietyofetchingproceduresthatselectivelyremovematerial,typicallywithachemicaletchantwhoseetchingpropertiesaredependentonthecrystallographicstructureofthebulkmaterial.29BulkMicromachiningBulkmicr30Wafer-to-WaferWafer-to-waferbondingisastrategycommonlyemployedtogetaroundtherestrictionsinthetypeofstructuresthatcanbefabricatedusingbulkmicromachining.Becauseanisotropicetching,bydefinition,onlyremovesmaterial,bondingofwafersallowsfortheadditionofmaterialtothebulkmicromachiningrepertoire.30Wafer-to-WaferWafer-to-wafer31SurfaceMicromachiningInsurfacemicromachining(SMM),alternatinglayersofstructural(usuallyPolysilicon)andsacrificialmaterial(usuallysilicondioxide)aredepositedandetchedtoformtheshaperequired.Surfacemicromachiningenablesthefabricationoffree-form,complexandmulti-componentintegratedelectromechanicalstructures,givingfreedomtofabricatedevicesandsystemswithoutconstraintsonmaterials,geometry,assemblyandinterconnectionsthatisthesourcefortherichnessanddepthofMEMSapplicationsthatcutacrosssomanyareas.Morethananyotherfactor,itissurfacemicromachiningthathasignitedandisattheheartofthecurrentscientificandcommercialactivityinMEMS.31SurfaceMicromachiningInsur32TestingTestingisveryimportantforqualityandreliabilitypurposes.TestingMEMSdevicesisunique.Comparedtoelectronicdevices,thathaveelectricvoltage/currentasinputandelectricvoltage/currentasoutput,MEMSdevicesmayhaveaclosedloopfromsensorstoactuators.Theinputcanbetemperature,humidity,loudness,acceleration...andtheoutputcanbevariouselectricalormechanicalresponses.TestingMEMSdevicesrequirethepropersetupofinputsandaccuratemeasureoftheoutputs.32TestingTestingisveryimpor33BasicStructures
BulkSiliconMicromachining
isasubtractivefabricationtechniquewhichconvertsthesubstrateintothemechanicalpartsoftheMEMSdevice.Packagingofthedevicetendstobemoredifficultinbulkmachiningbutstructureswithincreasedheightsareeasiertofabricate.33BasicStructures
BulkSilico34Example
RadioFrequencyMEMS34Example
RadioFrequencyMEMS35MaterialsMetalsAl,Au,Cu,W,Ni,TiNi,NiFe,InsulatorsSiO2-thermallygrownorvapordeposited(CVD)Si3N4-CVDPolymersTheKingofSemiconductors:Siliconstrongerthansteel,lighterthanaluminumsinglecrystalorpolycrystalline10nmto10mm35MaterialsMetals36MEMSMadeEasy!Studentsarepresentedwithaspectsofgeneralproductionandmanufacturingofelectromechanicalsystemstoenablethemtobetterliaisewithandparticipateinthemanufacturingindustrysector.1MEMSMadeEasy!37MicroElectroMechanicalSystemsIntheUnitedStates,thetechnologyisknownasmicroElectroMechanicalsystems(MEMS);inEuropeitiscalledmicrosystemstechnology(MST).MEMSisaportfoliooftechniquesandprocessestodesignandcreateminiaturesystems;Itisaphysicalproductoftenspecializedanduniquetoafinalapplication-onecanseldombyagenericMEMSproductfromtheelectronicshop;MEMSisawayofmakingthings.Thesethingsmergethefunctionsofsensingandactuationwithcomputationandcommunicationtolocallycontrolphysicalparametersatthemicroscale.2MicroElectroMechanicalSystem38ThisSubjectisCalledMicroElectroMechanicalSystem(MEMS)intheUnitedStates.MicrosysteminEuropeMicromachinesinJapan.3ThisSubjectisCalledMicroEl39History1750sElectrostaticmotorsdemonstratedbyBenjaminFranklinandAndrewGordon.1824DiscoveryofSiliconbyBerzelius.1927 FieldeffecttransistorpatentedtoLilienfield.1947 Inventionofthetransistor(madefromgermanium).1954 PiezoresistiveeffectinGermaniumandSiliconinventedbyC.S.Smith.1958 Siliconstraingaugesavailableinthemarket.1961 SiliconpressuresensordemonstratedbyKulite1967 Surfacemicromachininginvented.1970 FirstsiliconaccelerometerdemonstratedbyKulite.1977 FirstcapacitivepressuresensordemonstratedinStanford.1980 SilicontorsionalScanningMirrordemonstratedbyK.E.Petersen.1982 Demonstrationofdisposablebloodpressuretransducer.4History1750sElectrostaticmo40History,Cont.1982 Activeon-chipsignalconditioning.1984 FirstpolysiliconMEMSdevice(Howe,Muller).1988 Rotaryelectrostaticsidedrivemotors(Fan,Tai,Muller).1989 Lateralcombdrive(Tang,Nguyen,Howe).1991 Polysiliconhinge(Pister,Judy,Burgett,Fearing).1992 Gratinglightmodulator(Solgaard,Sandejas,Bloom).1992 MCNCstartsMUMPS.1993DigitalmirrordisplaybyTexasInstruments1993 Firstsurfacemicromachinedaccelerometersold.1994 XeF2usedforMEMS.1999OpticalnetworkswitchbyLucentTechnologies.Adaptedfrom:VeljkoMilanovic,LectureNotesatBekerly5History,Cont.1982 Activeon-41WhatareMEMS?MEMSisaclassofsystemsthatarephysicallysmall.Thesesystemshavebothelectricalandmechanicalcomponents.MEMSoriginallyusedmodifiedintegratedcircuit(computerchip)fabricationtechniquesandmaterialstocreatetheseverysmallmechanicaldevices.Todaytherearemanymorefabricationtechniquesandmaterialsavailable.SensorsandactuatorsarethetwomaincategoriesofMEMS.Sensorsarenon-invasivewhileactuatorsmodifytheenvironment.Microsensorsareusefulbecausetheirphysicalsizeallowsthemtobelessinvasive.Microactuatorsareusefulbecausetheamountofworktheyperformontheenvironmentissmallandthereforecanbeveryprecise.6WhatareMEMS?MEMSisaclass42PrecisionEngineeredGearsareshownheretobefabricatedbyadeepX-raylithographyandelectrodepositionprocess.Eachgearis100micronstall,madeofnickel,andareheldtosubmicrondimensions.MEMScanbeusedtocreatepartsofsystemswherehightolerancesarenecessary.ThesegearsbridgethegapbetweenMEMSandtraditionallymachinedprecisecomponents.7PrecisionEngineeredGearsar43MagneticMicroMotorscanalsobefabricatedbyadeepX-raylithographyandelectrodepositionprocess.Therotorismagneticallysalienttoallowamagneticfieldappliedtoeachofthetwopolestocausetherotortoturn.Externalloadinggearshavebeenadded.Thismotorhasbeenusedtotestthefrictioningeartrainsbyusinganexternalmagneticfieldtodrivethesalientrotor.Thisisanexampleofarotationalactuator.
8MagneticMicroMotorscanals44But,NotOnlyMiniaturizationMEMSdevicesaremanufacturedinasimilarfashiontocomputermicrochips.Thebiggestadvantagehereisnotnecessarilythatthesystemcanbeminuaturized,butratherthatthelithographictechniquesthatnowmass-producethousandsofcomplexmicrochipssimultaneouslycanalsobeusedtomanufacturemechanicalsensorsandactuators.Asthepriceofthesecomponentsisreducedtonearlyzero,ashashappenedwithmicroprocessors,theycandeployedpervasively,revolutionizingfuturesocietytoagreaterextent,possibly,thaneventhemicroprocessor.
9But,NotOnlyMiniaturization45WhatareMicrosystems?
Amicrosystemisdefinedasanintelligentminiaturisedsystemcomprisingsensing,processingand/oractuatingfunctions.Thesewouldnormallycombinetwoormoreofthefollowing:electrical,mechanical,optical,chemical,biological,magneticorotherproperties,integratedontoasingleormultichiphybrid.Microsensorsdetectchangesintheparametertobecontrolled,electroniccontrollogicthenoperatesmicroactuatorsbasedoninformationfromthesensors,tobringtheparametertobecontrolledwithinthedesiredlimits.
LeveldemandedControlLogicCircuitActuatorParameterstobeControlledSensor10WhatareMicrosystems?
Amic46SensorsMicrosensorsmeasuretheenvironmentwithoutmodifyingit.Microsensorsareusefulbecausetheirsmallphysicalsizeallowsthemtobelessinvasiveandworkinsmallerareas.Sofar,microengineeringasamanufacturingtechnologyhasbeenappliedmostsuccessfullytosensors.Thepay-offintermsofminiaturization,improvedperformance,andreducedproductioncosthavetransformedthemarketinpressuresensorsinparticular.Microphones.Accelerometers.Vibrationanalyzers.Flowmeters.Gassensors.Radiationdetectors.Chemicalsensors.Ionsensors.11SensorsMicrosensorsmeasure47ComparisonFrom:/c1.res.ppt/ppt/g.tutorial/ppt.htm12ComparisonFrom:http://mems.48ActuatorsActuationreferstotheactofeffectingortransmittingmechanicalmotion,forces,andworkbyadeviceonitssurroundingsinresponsetotheapplicationofabiasvoltageorcurrent.Microactuatorsinteractwiththeenvironment.Thefirstapplicationsthatwereidentifiedformicroengineeringweresensors.Thenotionofusingthesetechniquesforactuatorshasdevelopedfromthem.Examplesofactuatorsnearoralreadyonthemarketarelistedbelow:MicropumpsPressurepulseinkjetactuatorsThermalinkjetsThermalprintheadsFluidicamplifiersOpticalcommunicationselementsScanningmirrors13ActuatorsActuationrefersto49MicrostructuresThereisadiverserangeofmechanicalobjectsthatfallintoneitherthesensornortheactuatorcategory.Theyarebestdescribedasmicrostructures.Theseitemsareoftennomorethanarraysofsimpleshapessuchasgrooves,holes,nozzles,gridsetc.Examplesinclude:MicrosievesOpticalelementsSiliconhybridcircuitboardsMicroelectroniccomponentcoolingSiliconvacuumelectronicvalvesFluidisotopeseparatorsMicroconnectors(electricalandoptical).
14MicrostructuresThereisadi50ApplicationAreasofMEMSInvasiveandnoninvasivebiomedicalsensorsMiniaturebiochemicalanalyticalinstrumentsCardiacmanagementsystems(e.g.,pacemakers,catheters)DrugdeliverysystemsNeurologicaldisordersEngineandpropulsioncontrolAutomotivesafety,braking,andsuspensionsystemsElectromechanicalsignalprocessingDistributedsensorsforcondition-basedmaintenanceandmonitoringstructuralhealthDistributedcontrolofaerodynamicandhydrodynamicsystems.15ApplicationAreasofMEMSInv51WhyisMEMSUseful?MEMSarephysicallysmall,thisisthereasonwhyMEMSisuseful.MEMSusedforsensorsisusefulbecausesmallsensorsinterferelesswiththeenvironmenttheyaremeasuringthanlargerdevices.Anarrayofsmallsensorscanalsobeusedforredundancy.MEMSisusefulforactuatorsbecausethemotiontheydelivercanbeveryprecise.MEMSdevicescanalsobeplacedinsmallspacessuchasinsideautomobileengines,smallappliances,andlivingorganismstomeasureand/oraffecttheirenvironment.16WhyisMEMSUseful?MEMSare52WhatisMicroengineering?Microengineeringreferstothetechnologiesandpracticeofmakingthreedimensionalstructuresanddeviceswithdimensionsintheorderofmicrometers.Thetwoconstructionaltechnologiesofmicroengineeringaremicroelectronicsandmicromachining.Microelectronics,producingelectroniccircuitryonsiliconchips,isaverywelldevelopedtechnology.Micromachiningisthenameforthetechniquesusedtoproducethestructuresandmovingpartsofmicroengineereddevices.OneofthemaingoalsofMicroengineeringistobeabletointegratemicroelectroniccircuitryintomicromachinedstructures,toproducecompletelyintegratedsystems(microsystems).Suchsystemscouldhavehavethesameadvantagesoflowcost,reliabilityandsmallsizeassiliconchipsproducedinthemicroelectronicsindustry.17WhatisMicroengineering?Mic53MicroengineeringEnablesTheproductionofsmaller,lighter,andfasterversionsofexistingmechanicaldevices,withincreaseddimensionalaccuracy,e.g.micromotors.Theproductionofsensors,mainlyexploitingtheelectromechanicalpropertiesofsilicon,whereelectricalcharacteristicschangeinresponsetoachangeinaparticularexternalparameter,e.g.temperature,pressure,acceleration,humidityandradiation.Theuseofmaterialsandprocessescommontointegratedmicroelectronicswithmicromechanicalcomponentsbringingimprovementsinperformanceandcost.Batchprocessingtofabricatelargevolumesofminiaturecomponentsatlowcost,e.g.inkjetnozzles.Theopportunitytoextendprocesstechnologytoincludematerialsandtechniquesnotusedinmicroelectronics,butwhichofferspecificadvantagestomicromechanicaldevices.Theeconomicintegratedmanufactureofcompletesystemstoincludesensing,computationandactuation.18MicroengineeringEnablesThe54MarketsforMicroengineeredProductsMicroengineeringnotonlyprovidesanewmanufacturingrouteforexistingproducts,butalso,importantly,allowsthecreationofcompletelynewproductsandnewmarkets.Microengineeringisalreadyestablishedinthesensormarket,providinglargevolumesoflowcostsensorstotheautomotiveindustry,andlowvolumehighperformance,smallandlightweightsensorstoaerospaceanddefence.Thesensormarketisexpectedtogrowsignificantlyinthenextfewyears,withexceptionalgrowthinthesub-categoryofminiaturizedsensors.TheprojectedMEMSmarketfortheyear2002isexpectedtoreach6.7B$.19MarketsforMicroengineered55SuccessfulApplicationsAutomotiveIndustry ManifoldairpressuresensorsAirBagSensorsHealthandMedicine
BloodPressureSensorsMuscleSimulatorDigitalMirrorDisplay
VideoProjectionSystemPrinters
HPandCanon.
20SuccessfulApplicationsAutom56From:/c1.res.ppt/ppt/g.tutorial/ppt.htm21From:http://mems.colorado.e57From:/c1.res.ppt/ppt/g.tutorial/ppt.htm22From:http://mems.colorado.e58/c1.res.ppt/ppt/g.tutorial/ppt.htm23/c1.59WhatisMicromachining?Micromachiningisthesetofdesignandfabricationtoolsthatpreciselymachineandformstructuresandelementsatascalebelowthelimitsofourhumanpreceptivefaculties-themicroscale.MicromachiningistheunderlyingofMEMSfabrication;itisthetoolboxofMEMS.ThemicromachiningistheUnderlyingofMEMSfabrication;itisthetoolboxofMEMS.Theberthofthefirstmicromachinedcomponentsdatesbackmanydecades,butitwasthewell-establishedintegratedcircuitindustrythatindirectlyplayedanindispensableroleinfosteringanenvironmentsuitableforthedevelopmentandgrowthofmicromachiningtechnologies.24WhatisMicromachining?Micro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大排档施工组织设计
- 法治政 府说课稿
- 次根式的加减说课稿
- 南京工业大学浦江学院《酒店市场营销》2023-2024学年第一学期期末试卷
- 南京工业大学浦江学院《机械设计基础》2023-2024学年第一学期期末试卷
- 中学语文教学反思14
- 南京工业大学《仪器分析测试原理与应用》2021-2022学年第一学期期末试卷
- 南京工业大学《思想政治教育原理专题研究》2022-2023学年第一学期期末试卷
- 南京工业大学《食品添加剂》2022-2023学年第一学期期末试卷
- 南京工业大学《嵌入式系统及应用》2023-2024学年期末试卷
- 苗木出库入库管理制度
- DB32-4043-2021 池塘养殖尾水排放标准
- (许济洛平)洛阳市2023-2024学年高三第二次质量检测 英语试卷(含答案)
- 医院培训课件:《重症患者安全转运》
- 金属切削机床课件
- 陕西师范大学学士学位英语考试题
- 4.3平面镜成像导学案人教版八年级物理上册
- 连锁分店的股权设计方案
- 项目部安全生产责任制矩阵表
- 红十字应急救护培训教学:创伤技术
- 光伏施工进度计划表
评论
0/150
提交评论