




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三直线的参数方程(二)第二讲
参数方程学习目标1.理解并掌握直线的参数方程.2.能够利用直线的参数方程解决有关问题.三直线的参数方程(二)第二讲参数方程学习目标复习回顾复习回顾例2
已知抛物线y2=8x的焦点为F,过F且斜率为2的直线交抛物线于A,B两点.(1)求|AB|;(2)求AB的中点M的坐标及|FM|.类型二直线参数方程的应用精讲点拨例2已知抛物线y2=8x的焦点为F,过F且斜率为2的直线交解(1)抛物线y2=8x的焦点为F(2,0),解(1)抛物线y2=8x的焦点为F(2,0),归纳小结归纳小结跟踪训练2
直线l通过P0(-4,0),倾斜角α=
,l与圆x2+y2=7相交于A、B两点.(1)求弦长|AB|;(2)求A、B两点坐标.跟踪训练2直线l通过P0(-4,0),倾斜角α=,l与圆命题角度2求积|M0A|·|M0B|问题精讲点拨命题角度2求积|M0A|·|M0B|问题精讲点拨利用直线的参数方程,可以求一些距离问题,当求直线上某一定点到直线与曲线交点的距离时,根据直线参数方程中参数的几何意义解题更为方便.一定要遵循“直线标参代曲线普通”归纳小结利用直线的参数方程,可以求一些距离问题,当求直线上某一定点到直线的参数方程时课件(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,因为t1和t2是方程①的解,从而t1t2=-2.所以|PA|·|PB|=|t1t2|=|-2|=2.(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1(2)若曲线C1和C2相交于A,B两点,求|AB|.(3)若点P(-4,0)是曲线C1上的定点,求|PA|+|PB|的值.精讲点拨(2)若曲线C1和C2相交于A,B两点,求|AB|.(3)若直线的参数方程时课件直线的参数方程时课件(1)参数方程中一个确定的参数值对应着曲线上一个确定的点,由参数方程求曲线交点坐标时,可以通过方程组求出参数值,再根据参数值得出交点坐标.(2)解题时如果涉及求直线被曲线截得的线段的长度或者直线上的点与曲线交点之间线段长度的和、乘积等,都可以利用直线参数方程中参数的几何意义加以解决.归纳小结(1)参数方程中一个确定的参数值对应着曲线上一个确定的点,由直线的参数方程时课件直线的参数方程时课件达标检测D达标检测DD达标检测D达标检测达标检测达标检测达标检测达标检测达标检测达标检测规律与方法规律与方法3.要注意区别直线参数方程是否为标准形式,若不是标准形式,则参数t就不具有相应的几何意义.3.要注意区别直线参数方程是否为标准形式,若不是标准形式,则作业作业直线的参数方程时课件直线的参数方程时课件三直线的参数方程(二)第二讲
参数方程学习目标1.理解并掌握直线的参数方程.2.能够利用直线的参数方程解决有关问题.三直线的参数方程(二)第二讲参数方程学习目标复习回顾复习回顾例2
已知抛物线y2=8x的焦点为F,过F且斜率为2的直线交抛物线于A,B两点.(1)求|AB|;(2)求AB的中点M的坐标及|FM|.类型二直线参数方程的应用精讲点拨例2已知抛物线y2=8x的焦点为F,过F且斜率为2的直线交解(1)抛物线y2=8x的焦点为F(2,0),解(1)抛物线y2=8x的焦点为F(2,0),归纳小结归纳小结跟踪训练2
直线l通过P0(-4,0),倾斜角α=
,l与圆x2+y2=7相交于A、B两点.(1)求弦长|AB|;(2)求A、B两点坐标.跟踪训练2直线l通过P0(-4,0),倾斜角α=,l与圆命题角度2求积|M0A|·|M0B|问题精讲点拨命题角度2求积|M0A|·|M0B|问题精讲点拨利用直线的参数方程,可以求一些距离问题,当求直线上某一定点到直线与曲线交点的距离时,根据直线参数方程中参数的几何意义解题更为方便.一定要遵循“直线标参代曲线普通”归纳小结利用直线的参数方程,可以求一些距离问题,当求直线上某一定点到直线的参数方程时课件(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,因为t1和t2是方程①的解,从而t1t2=-2.所以|PA|·|PB|=|t1t2|=|-2|=2.(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1(2)若曲线C1和C2相交于A,B两点,求|AB|.(3)若点P(-4,0)是曲线C1上的定点,求|PA|+|PB|的值.精讲点拨(2)若曲线C1和C2相交于A,B两点,求|AB|.(3)若直线的参数方程时课件直线的参数方程时课件(1)参数方程中一个确定的参数值对应着曲线上一个确定的点,由参数方程求曲线交点坐标时,可以通过方程组求出参数值,再根据参数值得出交点坐标.(2)解题时如果涉及求直线被曲线截得的线段的长度或者直线上的点与曲线交点之间线段长度的和、乘积等,都可以利用直线参数方程中参数的几何意义加以解决.归纳小结(1)参数方程中一个确定的参数值对应着曲线上一个确定的点,由直线的参数方程时课件直线的参数方程时课件达标检测D达标检测DD达标检测D达标检测达标检测达标检测达标检测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童练字教学课件图片
- 2025年度南漳县招聘高中笔试备考试题含答案详解(培优a卷)
- 脓毒血症病例分析总结
- 婴幼儿护理与喂养指南
- 2025年甘肃客运资格证考题技巧与方法
- 2025年怀化危运资格证押运考试题库
- 2025年阿拉善盟道路旅客运输资格证从业考试
- 单病种质量管理课件
- 微生物实验室管理
- 幼儿活动教育教案设计
- 2025年河南省中考数学真题试卷及答案解析
- 2025春季学期国开电大专科《建筑施工技术》一平台在线形考(形考任务1至4)试题及答案
- 2025贵州省水利投资(集团)有限责任公司招聘84人笔试备考题库附答案详解(模拟题)
- 驻场运维合同协议书
- 2025年电动叉车项目立项申请报告范文
- T/CGAS 026.1-2023瓶装液化石油气管理规范第1部分:安全管理
- 2025年数字化营销考试试卷及答案的建议
- 陕投集团招聘笔试题库2025
- 辽宁省文体旅集团所属两家企业招聘笔试题库2025
- DB3205T 1174-2025学龄儿童青少年视力筛查及建档规范
- 公考宪法知识试题及答案
评论
0/150
提交评论