甘肃省平凉市崇信县2022年八年级数学第一学期期末质量检测试题含解析_第1页
甘肃省平凉市崇信县2022年八年级数学第一学期期末质量检测试题含解析_第2页
甘肃省平凉市崇信县2022年八年级数学第一学期期末质量检测试题含解析_第3页
甘肃省平凉市崇信县2022年八年级数学第一学期期末质量检测试题含解析_第4页
甘肃省平凉市崇信县2022年八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.利用形如这个分配性质,求的积的第一步骤是()A. B.C. D.2.在,0,,这四个数中,为无理数的是()A. B.0 C. D.3.函数的自变量的取值范围是()A. B. C.且 D.4.如图,圆柱的底面周长为24厘米,高AB为5厘米,BC是底面直径,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点C的最短路程是()A.6厘米 B.12厘米 C.13厘米 D.16厘米5.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个6.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,其中正确的结论有()A.个 B.个 C.个 D.个7.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5 C.(﹣2x2)4=16x6 D.(x+3y)(x﹣3y)=x2﹣3y28.若,则等于()A. B. C. D.9.如图,已知:,点、、…在射线上,点、、…在射线上,,、…均为等边三角形,若,则的边长为()A.20 B.40 C. D.10.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.12.在,,,,这五个数中,无理数有________个.13.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.14.将用四舍五入法精确到为__________.15.已知,则的值等于________.16.在中,,为直线上一点,为直线上一点,,设,.(1)如图1,若点在线段上,点在线段上,则,之间关系式为__________.(2)如图2,若点在线段上,点在延长线上,则,之间关系式为__________.17.已知直线与直线的交点是,那么关于、的方程组的解是______.18.二次根式与的和是一个二次根式,则正整数a的最小值为__________,其和为__________.三、解答题(共66分)19.(10分)化简求值:(1)已知,求的值.(2)已知,求代数式的值.20.(6分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?21.(6分)如图,,,求证:.22.(8分)如图,△ABC中,AB=AC,点E、F在边BC上,BF=CE,求证:AE=AF.23.(8分)如图(1)是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按照图(2)的形状拼成一个正方形.(1)请用两种不同的方法求图(2)中阴影部分的面积。方法1.________________;方法2:______________.请你写出下列三个式子:之间的等量关系___________;(2)根据(1)题中的等量关系,解决下列问题:已知,求;(3)实际上有许多恒等式可以用图形的面积来表示,如图(3),它表示的恒等式是___________.24.(8分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到.例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形(如图2),它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.

(1)观察图3,根据图形,写出一个代数恒等式:______________;(2)现有若干块长方形和正方形硬纸片如图4所示.请你仿照图3,用拼图的方法分解因式,并画出拼图验证所得的图形.25.(10分)小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的倍,两人在同起点,同时出发,结果小强先到目的地分钟.①当,时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含的式子表示).26.(10分)已知,在中,,点为的中点.(1)观察猜想:如图①,若点、分别为、上的点,且于点,则线段与的数量关系是_______;(不说明理由)(2)类比探究:若点、分别为、延长线上的点,且于点,请写出与的数量关系,在图②中画出符合题意的图形,并说明理由;(3)解决问题:如图③,点在的延长线上,点在上,且,若,求的长.(直接写出结果,不说明理由.)

参考答案一、选择题(每小题3分,共30分)1、A【分析】把3x+2看成一整体,再根据乘法分配律计算即可.【详解】解:的积的第一步骤是.故选:A.【点睛】本题主要考查了多项式乘多项式的运算,把3x+2看成整体是关键,注意根据题意不要把x-5看成整体.2、C【解析】根据无理数的定义(无理数是指无限不循环小数)选出答案即可.【详解】解:无理数是,故选:C.【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义,注意:无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的根式.3、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【详解】解:由题意可知:解得:且故选C.【点睛】此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.4、C【分析】根据题意,可以将圆柱体沿BC切开,然后展开,易得到矩形ABCD,根据两点之间线段最短,再根据勾股定理即可求得答案.【详解】解:∵圆柱体的周长为24cm∴展开AD的长为周长的一半:AD=12(cm)∵两点之间线段最短,AC即为所求∴根据勾股定理AC===13(cm)故选C.

【点睛】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.5、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.6、B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;

设甲车离开A城的距离y与t的关系式为y甲=kt,

把(5,300)代入可求得k=60,

∴y甲=60t,

设乙车离开A城的距离y与t的关系式为y乙=mt+n,

把(1,0)和(4,300)代入可得,解得,∴y乙=100t-100,

令y甲=y乙可得:60t=100t-100,解得t=2.5,

即甲、乙两直线的交点横坐标为t=2.5,

此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;

令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,

当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,令y甲=50,解得t=,令y甲=250,解得t=,∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,

当t=时,乙在B城,此时相距50千米,

综上可知当t的值为或或或时,两车相距50千米,故④错误;

综上可知正确的有①②共两个,

故选:B.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.7、B【解析】试题分析:A、根据合并同类项计算,原式=2;B、同底数幂的乘法,底数不变,指数相加,则计算正确;C、幂的乘方法则,底数不变,指数相乘,原式=16;D、根据平方差公式进行计算,原式==.考点:(1)同底数幂的计算;(2)平方差公式8、A【分析】由题意根据同底数幂的除法即底数不变指数相减进行计算.【详解】解:.故选:A.【点睛】本题考查同底数幂的除法,掌握同底数幂的除法运算法则是解答本题的关键.9、C【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,故选:C.【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.10、B【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、10【分析】先证AF=CF,再根据Rt△CFB中建立方程求出AF长,从而求出△AFC的面积.【详解】解:∵将矩形沿AC折叠,∴∠DCA=∠FCA,∵四边形ABCD为矩形,∴DC∥AB,∴∠DCA=∠BAC,∴∠FCA=∠FAC,∴AF=CF,设AF为x,∵AB=8,BC=4,∴CF=AF=x,BF=8-x,在Rt△CFB中,,即,解得:x=5,∴S△AFC=,故答案为:10.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理知识是解决本题的关键.12、【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在,,,,这五个数中,无理数有,这两个数,【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13、75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.14、8.1【分析】精确到哪位,就是对它后边的一位进行四舍五入,这里对千分位的6进行四舍五入,即可得出答案.【详解】用四舍五入法精确到0.01为8.1.故答案为:8.1.【点睛】本题考查了近似数和有效数字.精确到哪一位,即对下一位的数字进行四舍五入.15、-5【分析】由得到,整体代入求值即可得到答案.【详解】解:,故答案为:【点睛】本题考查的是分式的求值,掌握整体代入方法求分式的值是解题的关键.16、【分析】(1)利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论.【详解】(1)设∠ABC=x,∠AED=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE∴∠ACB=x,∠ADE=y,在△DEC中,∵∠AED=∠ACB+∠EDC,∴y=β+x,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠ADE+∠EDC=∠AED+∠EDC,∴α+x=y+β=β+x+β,∴α=2β;故答案为:α=2β;(2)当点E在CA的延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE,∴∠ACB=x,∠AED=y,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠EDC-∠ADE,∴x+α=β-y,在△DEC中,∵∠ECD+∠CED+∠EDC=180°,∴x+y+β=180°,∴α=2β-180°;故答案为α=2β-180°.【点睛】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.17、【分析】把点(1,b)分别代入直线和直线中,求出a、b的值,再将a、b的值代入方程组,求方程组的解即可;【详解】解:把点(1,b)分别代入直线和直线得,,解得,将a=-4,b=-3代入关于、的方程组得,,解得;【点睛】本题主要考查了一次函数与二元一次方程组,掌握一次函数与二元一次方程组是解题的关键.18、1–【解析】试题解析:∵二次根式−3与的和是一个二次根式,∴两根式为同类二次根式,则分两种情况:①是最简二次根式,那么3x=2ax,解得a=,不合题意,舍去;②不是最简二次根式,∵是最简二次根式,且a取最小正整数,∴可写成含的形式,∴a=1.∴当a=1时,=2,则−3+=-3+2=-.故答案为1;–三、解答题(共66分)19、(1)3;(2)-11【分析】(1)根据整式乘法先化简,再代入已知值计算;(2)根据整式乘法先化简,把变形可得,再代入已知值计算.【详解】(1)===2x+1当原式=2+1=3(2)==因为所以,所以原式=-6-5=-11【点睛】考核知识点:整式化简求值.掌握整式的运算法则,特别乘法公式是关键.20、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.21、证明见解析.【分析】由两直线平行内错角相等可得,,由公共边,可以证明,由全等三角形对应边相等即可证明.【详解】,,,,在和中,.【点睛】利用两直线平行的性质,可以得出两直线平行内错角相等,由全等三角形的判定定理可以证明,三角形全等可得对应边相等即可.22、见解析【分析】由等腰三角形的性质得出∠B=∠C,证明△ACE≌△ABF(SAS),即可得出结论.【详解】证明:∵AB=AC,∴∠B=∠C,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴AE=AF.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握等腰三角形的性质和证明三角形全等是解题的关键.23、(1)(m-n)2,,;(2)1;(3)【分析】(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释;(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2,(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)对a,b数值变换后的几何图解法,充分利用了数形结合的思想方法;(3)图③的面积计算也有两种方法,方法一是大长方形(长为的2m+n,宽为m+n)的面积是(2m+n)(m+n),方法二是组成大长方形的各个小长方形或正方形的面积和等于大长方形的面积,故而得到了代数恒等式.【详解】(1)方法1:阴影部分是一个正方形,边长为m-n,根据阴影部分正方形面积计算公式可得S阴=(m-n)2,方法2:大正方形边长为m+n,面积是:(m+n)2,四个长为m,宽为n的长方形的面积是4mn,阴影部分的面积是大正方形的面积减去四个长方形的面积S阴=(m+n)2-4mn,方法1与方法2均为求图②中阴影部分的面积,所以结果相等,即(m-n)2=(m+n)2-4mn,故答案为:(m-n)2,,;(2)(a+b)2-4ab=(a-b)2,(a+b)2=(a-b)2+4ab,=52-4×6=25-24=1∴(a+b)2=1;(3)计算图③的面积方法一是看作一个完整的长方形长为(m+n)宽为(2m+n),面积是:(m+n)(2m+n)方法二是:组成图③的各部分图形:2个边长为m的正方形的面积2m2,3个长为m,宽为n的长方形的面积即3mn,1个边长为n的正方形的面积n2,他们的面积和是:2m2+3mn+n2,方法一和方法二的计算结果相等即为:,故答案为:.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力.24、(1);(2),图详见解析【分析】(1)由题意根据面积的两种表达方式得到图3所表示的代数恒等式;(2)根据题意作长为a+2b,宽为a+b的长方形即可.【详解】解,(1)由图3知,等式为,(2)分解因式:,如图:【点睛】本题考查完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.25、(1)小强的速度为1米/分,小明的速度为2米/分;(2)①小强跑的时间为3分;②.【分析】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y米/分,由m=3,n=6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据题意得:=.解得:x=1.经检验,x=1是原方程的根,且符合题意.∴x+220=2.答:小强的速度为1米/分,小明的速度为2米/分.(2)①设小明的速度为y米/分,∵m=3,n=6,∴,解之得.经检验,是原方程的解,且符合题意,∴小强跑的时间为:(分)②小强跑的时间:分钟,小明跑的时间:分钟,小明的跑步速度为:分.故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论