




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列运算正确的是()A.3a–2a=1 B.a2·a3=a6 C.(a–b)2=a2–2ab+b2 D.(a+b)2=a2+b22.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣83.下列说法不正确的是(
)A.调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B.一组数据2,2,3,3,3,4的众数是3C.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是7D.一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是24.如图,△ABC中,AB=5,AC=8,BD、CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,分别交AB、AC于E、F,则△AEF的周长为()A.12 B.13 C.14 D.185.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形 B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形 D.对角线相等且互相平分的四边形是矩形6.下列四个图形是四款车的标志,其中轴对称图形有几个()A.1个 B.2个 C.3个 D.4个7.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)8.某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,209.下列因式分解正确的是()A. B.C. D.10.运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2–6x+9 C.x2+6x+9 D.x2+3x+9二、填空题(每小题3分,共24分)11.已知:如图,在平面直角坐标系xOy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.12.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.13.分解因式:2x3﹣6x2+4x=__________.14.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________15.如图,在的同侧,,点为的中点,若,则的最大值是_____.16.在实数0.23,4.,π,-,,0.3030030003…(每两个3之间增加1个0)中,无理数的个数是_________个.17.填空:(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,则∠A=度;∠B=度;∠C=度;(2)一个多边形的内角和与外角和之和为2160°,则这个多边形是边形;(3)在如图的平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小.则点P的坐标是.18.若关于的不等式组有且只有五个整数解,则的取值范围是__________.三、解答题(共66分)19.(10分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.20.(6分)先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.21.(6分)某校图书室计划购进甲乙两种图书,已知购买一本甲种图书比购买一本乙种图书多元,若用元购买甲种图书和用元购买乙种图书,则购买甲种图书的本数是购买乙种图书本数的一半.(1)求购买一本甲种图书、一本乙种图书各需要多少元?(2)经过商谈,书店决定给予优惠,即购买一本甲种图书就赠送一本乙种图书,如果该校图书室计划购进乙种图书的本数是甲种图书本数的倍还多本,且购买甲乙两种图书的总费用不超过元,那么最多可购买多少本甲种图书?22.(8分)解方程与不等式组(1)解方程:(2)解不等式组23.(8分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.(1)图中m=_____,n=_____;(直接写出结果)(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?24.(8分)如图,点A、B、C表示三个自然村庄,自来水公司准备在其间建一水厂P,要求水厂P到三个村的距离相等。请你用“尺规作图”帮自来水公司找到P的位置(不要求写出作法但要保留作图痕迹).25.(10分)规定一种新的运算“”,其中和是关于的多项式.当的次数小于的次数时,;当的次数等于的次数时,的值为、的最高次项的系数的商;当的次数大于的次数时,不存在.例如:,(1)求的值.(2)若,求:的值.26.(10分)先化简,再求的值,其中x=1.
参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:利用合并同类项的法则,同底数幂的乘法以及完全平方公式的知识求解即可求得答案.解答:解:A、3a-2a=a,故本选项错误;B、a2·a3=a5,故本选项错误;C、(a-b)2=a2-2ab+b2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【详解】请在此输入详解!2、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.3、A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5)÷2=(4+1+4+5)÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【点睛】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、B【解析】试题分析:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=3.故选B.考点:3.等腰三角形的判定与性质;3.平行线的性质.5、D【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【详解】A、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;
B、对角线相等的平行四边形才是矩形,故错误;
C、对角线互相垂直的四边形不一定是平行四边形,故错误;
D、对角线相等且互相平分的四边形是矩形,正确.
故选:D.【点睛】此题考查菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解题的关键,难度不大.6、B【解析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,所以第2个,第3个图是轴对称图形.故选B.7、A【解析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.8、D【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.9、D【分析】分别把各选项分解因式得到结果,逐一判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.,故本选项不符合题意;D.,故本选项符合题意;故选:D【点睛】此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、C【解析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+1.故答案选C考点:完全平方公式.二、填空题(每小题3分,共24分)11、【分析】根据y=x+3求出点A、B的坐标,得到OA、OB的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,代入求值即可.【详解】由=x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴.解得.∴直线A′B′的解析式是.故答案为:.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.12、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.13、2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.14、1.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B,
根据两点之间线段最短,
(1)如图,BD=10+5=15,AD=20,
由勾股定理得:AB====1.(2)如图,BC=5,AC=20+10=30,
由勾股定理得,AB====5.
(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=1,AD=10,
在直角三角形ABD中,根据勾股定理得:
∴AB===5;
由于1<5<5,故答案为1.【点睛】本题考查两点之间线段最短,关键是将长方体展开,根据两点之间线段最短,运用勾股定理解答.15、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题16、3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在所列的实数中,无理数有π,,0.3030030003…(每两个3之间增加1个0)这3个,
故答案为:3【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17、(1)52,36,92;(2)12;(3)(2,0)【分析】(1)通过三角形内角和性质与已知条件联立方程可得;(2)多边形的内角和公式可得;(3)线段和差最值问题,通过“两点之间,线段最短”.【详解】解:(1)由题意得,,解得,故答案为:52,36,92;(2)设这个多边形为n边形,由题意得,,解得,n=12,故答案为:12;(3)点B(4,2)关于x轴的对称点B′(4,﹣2),设直线AB′的关系式为,把A(﹣2,4),B′(4,﹣2)代入得,,解得,k=﹣1,b=2,∴直线AB′的关系式为y=﹣x+2,当y=0时,﹣x+2=0,解得,x=2,所以点P(2,0),故答案为:(2,0).【点睛】掌握三角形内角和,多边形内角和、外角和性质及线段的最值为本题的关键.18、【分析】先求出不等式组的解集,根据不等式组有且只有五个整数解,列出关于k的不等式即可得到答案.【详解】解不等式组得,∵不等式组有且只有五个整数解,∴,∴,故答案为:.【点睛】此题考查不等式组的整数解问题,能根据不等式组的解集列出k的不等式是解题的关键.三、解答题(共66分)19、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+2,故答案为:y=﹣x+2.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.20、,1.【分析】先把括号内通分,再进行减法运算,接着把除法运算化为乘法运算,则约分得到原式=,然后根据分式有意义的条件把m=1代入计算即可.【详解】解:原式===,∵m=2或﹣2或3时,原式没有意义,∴m只能取1,当m=1时,原式==1.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21、(1)购买一本甲种图书元,购买一本乙种图书需要元;(2)该校最多可以购买本甲种图书【分析】(1)设购买一本甲种图书需要元,则购买一本乙种图书需要元,根据题意,列出分式方程,求解即可;(2)设该校可以购买本甲种图书,根据题意列出一元一次不等式即可求出结论.【详解】解:(1)设购买一本甲种图书需要元,则购买一本乙种图书需要元,根据题意得:解得:经检验:是分式方程的解且符合题意,答:购买一本甲种图书元,购买一本乙种图书需要元.(2)设该校可以购买本甲种图书根据题意得:解得取整数,最大为答:该校最多可以购买本甲种图书.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.22、(1);(2)【分析】(1)先把分母化为相同的式子,再进行去分母求解;(2)依次解出各不等式的解集,再求出其公共解集.【详解】解:(1)原分式方程可化为,方程两边同乘以得:解这个整式方程得:检验:当,所以,是原方程的根(2)解不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60974-4:2025 RLV EN Arc welding equipment - Part 4: Periodic inspection and testing
- 2025至2030中国皮肤美容行业市场发展分析及竞争格局与投资前景报告
- 医疗教育中实施翻转课堂的策略与方法
- 矿山车队安全培训课件
- 飞行检查培训课件
- 教育建筑中智能电力系统的安全保障措施
- 当代教育中游玩耍的元素与心理定价策略的结合实践
- 创新教育心理策略助力学生全面发展
- 教育心理学在学生家庭联系中的角色
- 提升学生情感智商助力学业成功之路
- 水泥场地改造方案(3篇)
- 资材部安全生产责任制
- 既有建筑节能综合改造项目可行性研究报告
- 贵州省铜仁市万山区2024-2025学年部编版七年级下学期6月期末历史试题(含答案)
- 2025年工程管理基础知识考试试卷及答案
- 矿山生态修复方案
- 开曼群岛公司法2024版中文译本(含2024年修订主要内容)
- GB/T 19741-2005液体食品包装用塑料复合膜、袋
- 矿相学课程设计 -个旧锡矿
- 征信查询委托书(共4篇)
- 劳动防护用品配备标准(国标)
评论
0/150
提交评论