版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,直线m是ΔABC中BC边的垂直平分线,点P是直线m上的动点.若AB=6,AC=4,BC=1.则△APC周长的最小值是A.10 B.11 C.11.5 D.132.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°3.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.4.在中,若是的正比例函数,则值为A.1 B. C. D.无法确定5.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=6.如图所示分别平分和,则的度数为()A. B. C. D.7.下列语句正确的是()A.的立方根是2 B.-3是27的立方根C.的立方根是 D.的立方根是-18.如图,△ABC中,点D在BC延长线上,则下列结论一定成立的是()A.∠1=∠A+∠B B.∠1=∠2+∠AC.∠1=∠2+∠B D.∠2=∠A+∠B9.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁10.在给出的一组数据0,,,3.14,,中,无理数有()A.1个 B.2个 C.3个 D.4个11.已知函数的图象如左侧图象所示,则的图象可能是()A. B.C. D.12.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.某同学在解关于的分式方程去分母时,由于常数6漏乘了公分母,最后解得.是该同学去分母后得到的整式方程__________的解,据此可求得__________,原分式方程的解为__________.14.当x=______________时,分式的值是0?15.“x的与x的和不超过5”用不等式表示为____.16.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是_____米.17.如图,已知,,,则__________.18.已知,则的值等于___________.三、解答题(共78分)19.(8分)若一次函数的图象经过点.求的值,并在给定的直角坐标系中画出此函数的图象.观察此图象,直接写出当时,的取值范围.20.(8分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.21.(8分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=,BD=1.(1)求证:ΔBCD是直角三角形;(1)求△ABC的面积。22.(10分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.23.(10分)端州区在旧城改造过程中,需要整修一段全长4000m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了25%,结果提前8天完成任务.求原计划每天修路的长度为多少?24.(10分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.25.(12分)如图,L1、L2分别表示两个一次函数的图象,它们相交于点P.(1)求出两条直线的函数关系式;(2)点P的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB的面积.26.小明在证明“有两个角相等的三角形是等腰三角形”这一命题时,先画出图形,再写出“已知”,“求证”(如图),证明时他对所作的辅助线描述如下:“过点作的中垂线,垂足为”.(1)请你判断小明辅助线的叙述是否正确;如果不正确,请改正.(2)根据正确的辅助线的做法,写出证明过程.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据垂直平分线的性质BP=PC,所以△APC周长=AC+AP+PC=AC+AP+BP≥AC+AB=10.【详解】如图,连接BP∵直线m是ΔABC中BC边的垂直平分线,∴BP=PC,∴△APC周长=AC+AP+PC=AC+AP+BP,∵两点之间线段最短∴AP+BP≥AB,∴△APC周长最小为AC+AB=10.【点睛】本题主要考查线段垂直平分线的性质定理,以及两点之间线段最短.做本题的关键是能得出AP+BP≥AB,做此类题的关键在于能根据题设中的已知条件,联系相关定理得出结论,再根据结论进行推论.2、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.3、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.4、A【分析】先根据正比例函数的定义列出关于的方程组,求出的值即可.【详解】函数是正比例函数,,解得,故选.【点睛】本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.5、C【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.【点睛】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.6、C【分析】首先根据三角形的内角和求出∠BAC、∠BCA的度数和,然后根据三角形的角平分线的定义,用∠BAC、∠BCA的度数和除以2,求出∠OAC,∠OCA的度数和,最后根据三角形的内角和可求出∠AOC的度数.【详解】解:∵∠B=100°,
∴∠BAC+∠BCA=180°-∠B=180°-100°=80°,
又∵AO平分∠BAC,CO平分∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=40°,
∴∠AOC=180°-(∠OAC+∠OCA)=180°-40°=140°.故答案为:C.【点睛】此题主要考查了三角形内角和定理,以及三角形角平分线的定义,解答此题的关键是求出∠OAC,∠OCA的度数和.7、A【详解】解:A.的立方根是2,选项A符合题意.B.3是27的立方根,选项B不符合题意.C.的立方根是,选项C不符合题意.D.,1的立方根是1,选项D不符合题意.故选A.8、A【分析】根据三角形外角性质逐一判断即可得答案.【详解】∵∠1是△ABC的一个外角,∴∠1=∠A+∠B,故A选项说法一定成立,∠1与∠2+∠A的关系不确定,故B选项说法不一定成立,∠1与∠2+∠B的关系不确定,故C选项说法不一定成立,∠2与∠A+∠B的关系不确定,故D选项说法不一定成立,故选:A.【点睛】本题考查三角形外角得性质,三角形的一个外角,等于和它不相邻得两个内角得和;熟练掌握三角形外角性质是解题关键.9、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.
故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:这一组数中,无理数有:,,共3个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像1.1111111111…,等有这样规律的数.11、C【分析】由图知,函数y=kx+b图象过点(0,1),即k>0,b=1,再根据一次函数的特点解答即可.【详解】∵由函数y=kx+b的图象可知,k>0,b=1,∴y=﹣2kx+b=2kx+1,﹣2k<0,∴|﹣2k|>|k|,可见一次函数y=﹣2kx+b图象与x轴的夹角,大于y=kx+b图象与x轴的夹角.∴函数y=﹣2kx+1的图象过第一、二、四象限且与x轴的夹角大.故选:C.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.12、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.二、填空题(每题4分,共24分)13、x-3+6=m;2;【分析】根据题意,常数6没有乘以(x-2),即可得到答案;把代入方程,即可求出m的值;把m的值代入,重新计算原分式方程,即可得到原分式方程的解.【详解】解:根据题意,由于常数6漏乘了公分母,则∴;把代入,得:,解得:;∴,∴,∴,∴.经检验,是原分式方程的解.故答案为:;2;.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法和步骤.注意不要漏乘公分母,解分式方程需要检验.14、-1【解析】由题意得,解之得.15、x+x≤1.【分析】理解题意列出不等式即可.【详解】“x的与x的和不超过1”用不等式表示为x+x≤1,故答案为:x+x≤1.【点睛】此题主要考查了不等式的表示,解题的关键是正确理解题意.16、1【分析】由AB、ED垂直于BD,即可得到∠ABC=∠EDC=90°,从而证明△ABC≌△EDC此题得解.【详解】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=1.故答案为:1.【点睛】考查了三角形全等的判定和性质,解题是熟练判定方法,本题属于三角形全等的判定应用.17、20°【分析】由,得∠AEC=,结合,即可得到答案.【详解】∵,,∴∠AEC=,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.18、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.三、解答题(共78分)19、,图像见解析;.【分析】(1)把点代入一次函数解析式来求b的值,根据“两点确定一条直线”画图;(2)根据图象直接回答问题.【详解】(1)将点代入y=﹣2x+b,得2=-4+b解得:b=6∴y=﹣2x+6列表得:描点,并连线∴该直线如图所示:(2)确定直线与x轴的交点(3,0),与y轴的交点(0,6)由图象知:当时,的取值范围.【点睛】本题考查了一次函数的图象、一次函数图象上点的坐标特征等.一次函数的图象是一直线,根据“两点确定一条直线”来作图.20、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【点睛】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.21、(1)见解析;(1);【分析】(1)根据勾股定理的逆定理直接得出结论;
(1)设腰长为x,在直角三角形ADB中,利用勾股定理列出x的方程,求出x的值,进而利用三角形的面积公式求出答案.【详解】解:(1)∵CD=1,BC=,BD=1,
∴CD1+BD1=BC1,
∴△BDC是直角三角形;
(1)设腰长AB=AC=x,
在Rt△ADB中,
∵AB1=AD1+BD1,
∴x1=(x-1)1+11,
解得x=,
即△ABC的面积=AC•BD=××1=.【点睛】本题主要考查了勾股定理和其逆定理以及等腰三角形的性质,解题关键是利用勾股定理构造方程求出腰长.22、(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.【分析】(1)设学校购进黑文化衫x件,白文化衫y件,根据两种文化衫200件共花费4800元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=每件利润×数量,即可求出结论.【详解】解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45-25)×160+(35-20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23、原计划每天修路的长度为100米【分析】本题的关键语是:“提前1天完成任务”;等量关系为:原计划用的时间﹣实际所用的时间=1.而工作时间=工作总量÷工作效率.【详解】解:设原计划每天修路的长度为x米,依题意得:,解得x=100,经检验,x=100是所列方程的解.答:原计划每天修路的长度为100米.【点睛】找等量关系,列式子,计算求解24、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(1)得:点A、B的坐标分别为:,则,,设直线AB的解析式为:,∴解得:∴直线AB的解析式为:,∵∴作⊥轴于,∴,∴,∴点的横坐标为,又点在直线AB上,∴,∴点的坐标为;②由(1)得:点A、B的坐标分别为:,则,,∴,,∴点的坐标为,设直线AM的解析式为:,∴解得:∴直线AM的解析式为:,根据题意,平移后点,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,如图1,∴∥,∵,∴,则,为最小值,即点为所求,则点N的横坐标与点的横坐标相同都是,点N在直线AM上,∴,∴点的坐标为,∴,;(3)根据题意得:点的坐标分别为:,设直线的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度卫星导航系统服务合同
- 2024天然气运输物流信息化建设合同
- 2024常见签订劳动合同陷阱
- 2024年工程项目验收与交付合同
- 2024年建筑工程混凝土专项分包协议
- 2024年度吨不锈钢带打印功能电子地磅秤技术支持合同
- 2024年大数据服务合作协议
- 2024年度环保项目工程设计与施工合同
- 2024年度电子商务平台技术支持与运营服务合同
- 2024年度水果购销合同
- 污泥( 废水)运输服务方案(技术方案)
- 公司章程范本杭州工商docx
- 职业院校面试题目及答案
- 全护筒跟进旋挖施工方案
- 海水淡化处理方案
- 初中数学基于大单元的作业设计
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
- 相邻企业间安全管理协议
- 装饰装修工程售后服务具体措施
- 乙炔发生器、电石库安全检查表
评论
0/150
提交评论