2023届内蒙古自治区鄂尔多斯市准格尔旗第五中学九年级数学第一学期期末复习检测模拟试题含解析_第1页
2023届内蒙古自治区鄂尔多斯市准格尔旗第五中学九年级数学第一学期期末复习检测模拟试题含解析_第2页
2023届内蒙古自治区鄂尔多斯市准格尔旗第五中学九年级数学第一学期期末复习检测模拟试题含解析_第3页
2023届内蒙古自治区鄂尔多斯市准格尔旗第五中学九年级数学第一学期期末复习检测模拟试题含解析_第4页
2023届内蒙古自治区鄂尔多斯市准格尔旗第五中学九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.2.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=63.方程的根是()A.x=4 B.x=0 C. D.4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个5.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°6.下列命题为假命题的是()A.直角都相等 B.对顶角相等C.同位角相等 D.同角的余角相等7.二次函数的部分图象如图所示,图象过点,对称轴为.下列说法:①;②;③4;④若,是抛物线上两点,则,错误的是()A.① B.② C.③ D.④8.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=159.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是()A. B. C. D.10.已知反比例函数y=,则下列点中在这个反比例函数图象上的是()A.(1,2) B.(1,﹣2) C.(2,2) D.(2,l)二、填空题(每小题3分,共24分)11.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.12.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;13.抛物线经过点,则这条抛物线的对称轴是直线__________.14.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.15.如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为_____.16.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.17.如图,四边形是菱形,经过点、、与相交于点,连接、,若,则的度数为__________.18.若m﹣=3,则m2+=_____.三、解答题(共66分)19.(10分)A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.20.(6分)如图,矩形中,,,点是边上一定点,且.(1)当时,上存在点,使与相似,求的长度.(2)对于每一个确定的的值上存在几个点使得与相似?21.(6分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.(8分)解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=023.(8分)解方程:(1)x2﹣2x+1=0(2)2x2﹣3x+1=024.(8分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.25.(10分)九年级甲班和乙班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球;将两班选手的进球数绘制成如下尚不完整的统计图表:进球数/个1098743乙班人数/个112411平均成绩中位数众数甲班77c乙班ab7(1)表格中b=,c=并求a的值;(2)如果要从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班,请说明理由;如果要争取个人进球数进入学校前三名,你认为应该选择哪个班,请说明理由.26.(10分)汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:),表示水位高度(单位:),当时,达到警戒水位,开始开闸放水.02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.

参考答案一、选择题(每小题3分,共30分)1、C【详解】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.2、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2,3),∵抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.3、C【分析】利用因式分解法求解即可.【详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.4、B【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系5、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6、C【解析】根据直角、对顶角的概念、同位角的定义、余角的概念判断.【详解】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、C【分析】根据抛物线的对称轴和交点问题可以分析出系数的正负.【详解】由函数图象可得:a>0,c<0,所以b>0,2a-b=0,所以abc<0,抛物线与x轴的另一个交点是(1,0),当x=2时,y>0,所以4,故③错误,因为,是抛物线上两点,且离对称轴更远,所以故选:C【点睛】考核知识点:二次函数图象.理解二次函数系数和图象关系是关键.8、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即,故选:C.【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.9、C【分析】根据图形证明△AOE≌△COG,作KM⊥AD,证明四边形DKMN为正方形,再证明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,设正方形边长为a,CG=MN=x,根据正方形的性质列出平行四边形的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形是平行四边形,四边形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四边形AEND为矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四边形DKMN为正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,设CG=MN=x,设正方形边长为a则S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四边形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四边形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面积BE=a-x,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.10、A【分析】根据y=得k=x2y=2,所以只要点的横坐标的平方与纵坐标的积等于2,就在函数图象上.【详解】解:A、12×2=2,故在函数图象上;B、12×(﹣2)=﹣2≠2,故不在函数图象上;C、22×2=8≠2,故不在函数图象上;D、22×1=4≠2,故不在函数图象上.故选A.【点睛】本题主要考查反比例函数图象上点的坐标特征,所有反比例函数图象上的点的坐标适合解析式.二、填空题(每小题3分,共24分)11、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【点睛】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.12、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.13、【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线经过点,且点,点关于直线x=1对称,∴这条抛物线的对称轴是:直线x=1.故答案是:.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键.14、1+【分析】利用二次函数图象上点的坐标特征可求出点A、B、D的坐标,进而可得出OD、OA、OB,根据圆的性质可得出OM的长度,在Rt△COM中,利用勾股定理可求出CO的长度,再根据CD=CO+OD即可求出结论.【详解】当x=0时,y=(x﹣1)2﹣4=﹣1,∴点D的坐标为(0,﹣1),∴OD=1;当y=0时,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴点A的坐标为(﹣1,0),点B的坐标为(0,1),∴AB=4,OA=1,OB=1.连接CM,则CM=AB=2,OM=1,如图所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案为1+.【点睛】先根据二次函数与一元二次方程的关系,勾股定理,熟练掌握二次函数与一元二次方程的关系是解答本题的关键.15、4cm【分析】连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,根据折叠的性质可知OE=DE,再根据垂径定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的长,进而可求出AB的长.【详解】解:如图,连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,∵折叠后恰好经过圆心,∴OE=DE,∵⊙O的半径为4cm,∴OE=OD=×4=2(cm),∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE===2(cm).∴AB=2AE=4cm.故答案为:4cm.【点睛】本题考查了垂径定理,翻折变换的性质以及勾股定理,正确作出辅助线是解题的关键.16、15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=•2π•3•5=15π.

故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17、【分析】根据菱形的性质得到∠ACB=∠DCB=(180°−∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【详解】解:∵四边形ABCD是菱形,∠D=78°,

∴∠ACB=∠DCB=(180°−∠D)=51°,

∵四边形AECD是圆内接四边形,

∴∠AEB=∠D=78°,

∴∠EAC=∠AEB−∠ACE=27°,

故答案为:27°.【点睛】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.18、1【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【详解】解:∵=m2﹣2+=9,∴m2+=1,故答案为1.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.三、解答题(共66分)19、3小时.【分析】本题的等量关系是路程=速度×时间.本题可根据乙从B到A然后再到B用的时间=甲从A到B用的时间-20分钟-40分钟来列方程.【详解】解:设甲从A地到B地步行所用时间为x小时,由题意得:化简得:2x2-5x-3=0,解得:x1=3,x2=-,经检验知x=3符合题意,∴x=3,∴甲从A地到B地步行所用时间为3小时.【点睛】本题考查分式方程的应用,注意分式方程结果要检验.20、(1)或1;(2)当且时,有1个;当时,有2个;当时,有2个;当时,有1个.【分析】(1)分△AEF∽△BFC和△AEF∽△BCF两种情形,分别构建方程即可解决问题;(2)根据题意画出图形,交点个数分类讨论即可解决问题;【详解】解:(1)当∠AEF=∠BFC时,

要使△AEF∽△BFC,需,即,解得AF=1或1;

当∠AEF=∠BCF时,

要使△AEF∽△BCF,需,即,解得AF=1;

综上所述AF=1或1.(2)如图,延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;

连结CE,以CE为直径作圆交AB于点F2、F1.当m=4时,由已知条件可得DE=1,则CE=5,即图中圆的直径为5,可得此时图中所作圆的圆心到AB的距离为2.5,等于所作圆的半径,F2和F1重合,即当m=4时,符合条件的F有2个,当m>4时,图中所作圆和AB相离,此时F2和F1不存在,即此时符合条件的F只有1个,当1<m<4且m≠1时,由所作图形可知,符合条件的F有1个,综上所述:当1<m<4且m≠1时,有1个;

当m=1时,有2个;

当m=4时,有2个;

当m>4时,有1个.【点睛】本题考查作图-相似变换,矩形的性质,圆的有关知识等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;

(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;

(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;

(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,

∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,

故答案为17;

(2)如图所示:

(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;

故答案为2.8;

(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,

①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;

②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;

故答案为①②.【点睛】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22、(1)x1=3,x2=﹣7;(2)x1=,x2=【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x2+4x﹣21=0(x﹣3)(x+7)=0解得x1=3,x2=﹣7;(2)x2﹣7x﹣2=0∵△=49+8=57∴x=解得x1=,x2=.【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.23、(1)x1=x2=1;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【详解】解:(1)x2﹣2x+1=0(x-1)2=0∴x1=x2=1(2)2x2﹣3x+1=0(2x-1)(x-1)=0∴x1=1,x2=【点睛】本题考查的是解一元二次方程,解一元二次方程主要有以下几种解法:直接开方法、配方法、公式法和因式分解法.24、(1)1﹣15;(2)15π【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,则得出的长度.【详解】解:(1)连接OE,过O作OF⊥BM于F,则四边形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π•60=15π.【点睛】本题考查了直角三角形的性质,弧长的计算、矩形的性质以及垂径定理,是基础知识要熟练掌握.25、(1)1,1,a的值为1;(2)要选出一个成绩较稳定的班级争夺团

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论