版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知:如图,在中,,的垂直平分线,分别交,于点,.若,,则的周长为()A.8 B.10 C.11 D.132.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A.2 B. C.4 D.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个5.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°6.已知关于x、y的方程组,解是,则2m+n的值为()A.﹣6 B.2 C.1 D.07.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.8.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1 B.-1 C.-+1 D.--19.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例10.如图,一个梯形分成-一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是和,那么阴影部分的面积是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,是的垂直平分线,的周长为14,,那么的周长是__________.12.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是___________.13.某学生数学课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例记入总评成绩,则该生数学总评成绩是____分.14.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.15.已知,则________.16.如图,在正方形网格中,∠1+∠2+∠3=_____________17.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.18.已知a+=5,则a2+的值是_____.三、解答题(共66分)19.(10分)甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.20.(6分)计算(1)-+(2)21.(6分)在中,,,点是直线上的一点,连接,将线段绕点逆时针旋转,得到线段,连接.(1)操作发现如图1,当点在线段上时,请你直接写出与的位置关系为______;线段、、的数量关系为______;(2)猜想论证当点在直线上运动时,如图2,是点在射线上,如图3,是点在射线上,请你写出这两种情况下,线段、、的数量关系,并对图2的结论进行证明;(3)拓展延伸若,,请你直接写出的面积.22.(8分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.23.(8分)如图,两条射线BA∥CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,分别交AB,CD与点A,D.(1)求∠BPC的度数;(2)若S△ABP为a,S△CDP为b,S△BPC为c,求证:a+b=c.24.(8分)如图,直线角形与两坐标轴分别交于,直线与轴交于点与直线交于点面积为.(1)求的值(2)直接写出不等式的解集;(3)点在上,如果的面积为4,点的坐标.25.(10分)(1)计算:;(2)求中的的值.26.(10分)如图,在平面直角坐标系中,直线与轴交于点,点在直线上,点是线段上的一个动点,过点作轴交直线点,设点的横坐标为.(1)的值为;(2)用含有的式子表示线段的长;(3)若的面积为,求与之间的函数表达式,并求出当最大时点的坐标;(4)在(3)的条件下,把直线沿着轴向下平移,交轴于点,交线段于点,若点的坐标为,在平移的过程中,当时,请直接写出点的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据线段垂直平分线的定义和性质可得,,然后求出周长等于,再根据已知条件,代入数据计算即可得解.【详解】∵是的垂直平分线∴,∴的周长∵,∴的周长.故选:C【点睛】本题涉及到的知识点主要是线段垂直平分线的定义和性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.2、C【详解】解:∵∠B=60°,DE⊥BC,
∴BD=2BE=2,
∵D为AB边的中点,
∴AB=2BD=4,
∵∠B=∠C=60°,
∴△ABC为等边三角形,
∴AC=AB=4,
故选:C.3、C【解析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.4、C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.5、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.6、A【解析】把代入方程组得到关于m,n的方程组求得m,n的值,代入代数式即可得到结论.【详解】把代入方程得:解得:,则2m+n=2×(﹣2)+(﹣2)=﹣1.故选A.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,代数式的求值,正确的解方程组是解题的关键.7、B【解析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.8、B【解析】试题解析:由勾股定理得:∴数轴上点A所表示的数是故选B.9、B【详解】解:设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.10、B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:∴阴影部分面积是25,
故选:B.【点睛】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.二、填空题(每小题3分,共24分)11、1【分析】由垂直平分线的性质可得,故的周长可转化为:,由,可得,故可求得的周长.【详解】∵是的垂直平分线,∴,∵的周长为14,∴,又,∴,∴的周长.故答案为:1.【点睛】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,解题的关键是运用线段的垂直平分线的性质.12、(5,-1).【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,-1).故答案为:(5,-1).【点睛】本题考查了坐标与图形变化-平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.13、88.6【解析】解:该生数学科总评成绩是分。14、2秒或3.5秒【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.【详解】∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9−3t=5−t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t−9=5−t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2秒或3.5秒.【点睛】本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.15、1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】根据题意得,a−4=2,b+3=2,解得a=4,b=−3,所以1.故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.也考查了求算术平方根.16、135°【分析】先证明△ABC≌△AEF,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠BAC=∠4,∵∠BAC=∠1,
∴∠4=∠1,
∵∠3+∠4=90°,
∴∠1+∠3=90°,
∵AG=DG,∠AGD=90°,
∴∠2=45°,
∴∠1+∠2+∠3=135°,
故答案为:135°【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.17、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.18、1【分析】根据完全平分公式,即可解答.【详解】解:a2+=.故答案为:1.【点睛】本题考查完全平方公式的运用,关键在于通过条件运用完全平方公式解决问题.三、解答题(共66分)19、(1)y=120x﹣140(2≤x≤4.5);(2)当x=时,轿车在货车前30千米.【分析】(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)由货车和轿车相距30千米列出方程解答即可.【详解】(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.20、(1);(2)1.【分析】(1)先化简二次根式,再计算二次根式的乘法与加减法即可得;(2)先化简二次根式,再计算二次根式的乘除法与加法即可得.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.21、(1),;(1),证明见解析;(3)71或1.【分析】(1)由已知条件可知,根据全等三角形的判定方法可证得,再利用全等三角形的性质对应边相等对应角相等,进而求得,.(1)方法同(1),根据全等三角形的判定方法可证得,进而求得结论.(3)在(1)、(1)的基础上,首先对第三问进行分类讨论并画出相应图形,然后求出,长,再将相应数据代入三角形的面积公式,进而求解.【详解】(1)结论:,证明:∵线段是由逆时针旋转得到的∴,∵∴∴∴∴在和中,∴∴,∵∴∵∴∵在四边形中,,∴∴(1)由图1可得:,由图3可得:证明:∵,∴∴在和中,∴∴∵∴(3)71或1如图:∵,∴∵∴如图:∵,∴∵∴【点睛】本题考查了旋转的性质、全等三角形的判定和性质以及分类讨论的数学思想,利用全等三角形的对应边相等进行等量交换,证明线段之间的数量关系,这是一种很重要的方法,注意掌握.22、32°【分析】设∠1=∠2=x,根据三角形外角的性质可得∠4=∠3=2x,在△ABC中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x的值,即可求得∠4、∠3的度数,在△ADC中,根据三角形的内角和定理求得∠DAC的度数即可.【详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x,在△ABC中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°.在△ADC中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.23、(1)90°;(2)证明过程见解析;【分析】(1)根据角平分线定义和同旁内角互补,可得∠PBC+∠PCB的值,于是可求∠BPC;(2)利用角平分线性质作垂直证明全等,通过割法获得面积关系.【详解】(1)∵BA∥CD,∴∠ABC+∠BCD=180°,∵PB和PC分别平分∠ABC和∠DCB,∴∠PBC=∠ABC,∠PCB=∠BCD,∴∠PBC+∠PCB=×(∠ABC+∠BCD)=90°,∴∠BPC=90°;(2)如图,作PQ⊥BC,过P点作A′D′⊥CD,∵∠A′BP=∠QBP,∠BA′P=∠BQP,BP=BP∴△A′BP≌△BQP(AAS)同理△PQC≌△PCD′(AAS)∴S△BCP=S△BPQ+S△PQC=S△ABP+S△PCD∴a+b=c.【点睛】本题考查的是角平分线的性质、三角形中位线定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.24、(1);(2);(3)P(-5,0)或(3,0).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D的横坐标,利用一次函数图象上的点的坐标特点即可求出点D的坐标,由点D的坐标即可得到结论.(2)先移项,再合并同类项,即可求出不等式的解集.(3)由直线AB的表达式即可得出B的坐标,根据三角形面积为4,可计算PB的长,根据图形和点B的坐标可得P的坐标.【详解】(1)当x=0时,,∴A(0,1),C(0,4)∴AC=3∴∴当x=1时,∴D(1,2)将D(1,2)代入中解得(2)(3)在中,当时,∴B(-1,0)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年白城道路货物运输从业资格证考试
- 劳务合同范例修灶台
- 合伙销售酒合同范例
- 三方合作研发协议合同范例
- 劳动合同范例企业角度
- 用别人照写合同范例
- 文体馆物业合同范例
- 正规经营合同范例
- 安装射灯服务合同范例
- 房屋交付补足合同范例
- 科技兴国未来有我主题班会教学设计
- 房子管护合同范例
- 2024年度房屋装修工程合同
- 光伏施工安全措施
- 2024-2025华为ICT大赛(网络赛道)高频备考试题库500题(含详解)
- 汽车智能制造技术课件
- 江苏省扬州市邗江中学2025届物理高一第一学期期末学业质量监测试题含解析
- 2024年事业单位招聘考试计算机基础知识复习题库及答案(共900题)
- 深圳大学《射频识别原理与应用》2023-2024学年第一学期期末试卷
- 爱劳动课件教学课件
- 云南省高中信息技术学业水平考试知识点复习
评论
0/150
提交评论