2022年广东省广州市海珠区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2022年广东省广州市海珠区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2022年广东省广州市海珠区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2022年广东省广州市海珠区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2022年广东省广州市海珠区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A.③—④—①—② B.②—①—④—③ C.④—①—②—③ D.④—①—③—②2.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.163.某小组作“用频率估计概率的实验”时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A.掷一个质地均匀的正六面体骰子,向上的面点数是4B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红色D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球4.已知是关于的反比例函数,则()A. B. C. D.为一切实数5.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是()A.矩形和矩形的面积之差 B.矩形和矩形的面积之差C.矩形和矩形的面积之差 D.矩形和矩形的面积之差6.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.7.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变9.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30° B.35° C.45° D.60°10.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为()A.64 B.72 C.80 D.9611.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为A.6 B.12 C.12 D.1612.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.14.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.15.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)17.一块含有角的直角三角板按如图所示的方式放置,若顶点的坐标为,直角顶点的坐标为,则点的坐标为______.18.计算若,那么a2019+b2020=____________.三、解答题(共78分)19.(8分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)20.(8分)(1)解方程(2)计算21.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.22.(10分)已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.23.(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A区、B区、和C区的居民(A区、B区、和C区之间均有小路连接),要在小区内设立物业管理处P.如果想使这个物业管理处P到A区、B区、和C区的距离相等,应将它建在什么位置?请在图中作出点P.24.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.25.(12分)如图,在正方形ABCD中,,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求AC的长;(2)求证矩形DEFG是正方形;(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一天中影子的长短和方向判断即可.【详解】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案故选B【点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.2、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.3、A【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:A、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故A选项正确;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故B选项错误;

C、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:,故C选项错误;

D、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故D选项错误;

故选:A.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4、B【分析】根据题意得,,即可解得m的值.【详解】∵是关于的反比例函数∴解得故答案为:B.【点睛】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于是解题的关键.5、B【分析】根据相似多边形的性质得到,即AF·BC=AB·AH①.然后根据IJ∥CD可得,,再结合以及矩形中的边相等可以得出IJ=AF=DE.最后根据S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,结合①②可得出结论.【详解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面积的条件是知道矩形ABJH和矩形HDEG的面积之差.故选:B.【点睛】本题考查了相似多边形的性质,矩形的性质等知识,正确的识别图形及运用相关性质是解题的关键.6、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.考点:(1)中心对称图形;(2)轴对称图形7、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.8、B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为1,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[1×39+(90-90)2]÷40<1,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9、A【解析】试题分析:连接OA,根据直线PA为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP-∠OAB=90°-60°=30°.考点:切线的性质10、C【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【详解】∵S△BDE=4,S△CDE=16,

∴S△BDE:S△CDE=1:4,

∵△BDE和△CDE的点D到BC的距离相等,∴,∴,∵DE∥AC,

∴△DBE∽△ABC,

∴S△DBE:S△ABC=1:25,∴S△ABC=100

∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.

故选C.【点睛】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.11、D【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.【详解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面积=2S△ABC=16故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.12、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【详解】由二次函数,

∴.∴抛物线与轴有二个公共点.

故选:A.【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.二、填空题(每题4分,共24分)13、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.14、h≤3【解析】试题解析:二次函数的对称轴为:当时,随的增大而增大,对称轴与直线重合或者位于直线的左侧.即:故答案为:点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.当时,随的增大而增大,可知对称轴与直线重合或者位于直线的左侧.根据对称轴为,即可求出的取值范围.15、60°或120°【解析】试题解析:如图,作OH⊥AB于H,连接OA、OB,∠C和∠C′为AB所对的圆周角,∵OH⊥AB,∴AH=BH=AB=,在Rt△OAH中,∵cos∠OAH=,∴∠OAH=30°,∴∠AOB=180°-60°=120°,∴∠C=∠AOB=60°,∴∠C′=180°-∠C=120°,即弦AB所对的圆周角为60°或120°.点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.16、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.17、【分析】过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△CAO,设点B坐标为(x,y),根据相似三角形的性质即可求解.【详解】过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴,∴△BCD∽△CAO,∴,设点B坐标为(x,y),则,,∴=AC=2,∵有图知,,∴,解得:,则y=3.即点B的坐标为.故答案为【点睛】本题考查了坐标与图形性质、相似三角形的判定及性质、特殊角的三角函数值,解题的关键是要求出BC和AC的值和30度角的三角函数联系起来,作辅助线构造直角三角形为三角函数作铺垫.18、0【分析】根据二次根式和绝对值的非负数性质可求出a、b的值,进而可得答案.【详解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案为:0【点睛】本题考查二次根式和绝对值的非负数性质,如果几个非负数的和为0,那么这几个非负数分别为0;熟练掌握非负数性质是解题关键.三、解答题(共78分)19、(1)①见解析,②见解析,点C2的坐标为(-3,1);(2)(-n,m)【分析】(1)①根据关于原点对称的点的坐标特征得到A1、B1、C1的坐标,然后描点即可;

②利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,然后顺次连接,从而得到点C2的坐标;

(2)利用②中对应点的规律写出Q的坐标.【详解】解:(1)①如图,△A1B1C1为所求;②如图,△A2B2C2为所求,点C2的坐标为(-3,1)(2)∵A(0,1)绕原点O逆时针旋转90°的对应点A2(-1,0),B(3,3)绕原点O逆时针旋转90°的对应点B2(-3,3),C(1,3)绕原点O逆时针旋转90°的对应点C2(-3,1),∴点Q的坐标为(-n,m).【点睛】本题考查了作图−−中心对称与旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、(1);(2)1.【分析】(1)根据因式分解法解方程,即可得到答案;(2)分别计算绝对值,特殊角的三角函数,二次根式,负整数指数幂,然后再进行合并,即可得到答案.【详解】解:(1),∴,∴,∴;(2),.【点睛】本题考查了解一元二次方程,实数的混合运算,解题的关键是掌握解一元二次方程的方法,以及实数混合运算的运算法则.21、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.22、(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1【分析】(1)可通过二次函数的解析式列出方程,即可求出相关点的坐标;(2)存在,先求出直线BC和直线BD的解析式,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,x﹣),G(x,x﹣3),列出等式方程,即可求出点P坐标;(3)求出直线y=x+t经过点B时t的值,再列出当直线y=x+t与抛物线y=x2﹣2x﹣3只有一个交点时的方程,使根的判别式为0,求出t的值,即可写出t的取值范围.【详解】解:(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3;当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,﹣3),∵D为OC的中点,∴D(0,﹣);(2)存在,理由如下:设直线BC的解析式为y=kx﹣3,将点B(3,0)代入y=kx﹣3,解得k=1,∴直线BC的解析式为y=x﹣3,设直线BD的解析式为y=mx﹣,将点B(3,0)代入y=mx﹣,解得m=,∴直线BD的解析式为y=x﹣,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,x﹣),G(x,x﹣3),∴EH=﹣x+,HG=x﹣﹣(x﹣3)=﹣x+,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,当EH=HG=GP时,﹣x+=﹣x2+3x,解得x1=,x2=3(舍去),∴点P的坐标为(,﹣);(3)当直线y=x+t经过点B时,将点B(3,0)代入y=x+t,得,t=﹣1,当直线y=x+t与抛物线y=x2﹣2x﹣3只有一个交点时,方程x+t=x2﹣2x﹣3只有一个解,即x2﹣x﹣3﹣t=0,△=()2﹣4(﹣3﹣t)=0,解得t=﹣,∴由图2可以看出,当直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点时,t的取值范围为:﹣<t<﹣1时.【点睛】本题考查了二次函数与一次函数的综合,涉及了求二次函数与坐标轴的交点坐标、一次函数的解析式、解一元二次方程、确定一次函数与二次函数的图像的交点个数,灵活运用一次函数与二次函数的图像与性质是解题的关键.23、见解析【分析】物业管理处P到B,A的距离相等,那么应在BA的垂直平分线上,到A,C的距离相等,应在AC的垂直平分线上,那么到A区、B区、C区的距离相等的点应是这两条垂直平分线的交点;【详解】解:如图所示:【点睛】本题主要考查了作图—应用与设计作图,掌握作图—应用与设计作图是解题的关键.24、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论