广东省江门市江海区2022-2023学年数学九上期末达标测试试题含解析_第1页
广东省江门市江海区2022-2023学年数学九上期末达标测试试题含解析_第2页
广东省江门市江海区2022-2023学年数学九上期末达标测试试题含解析_第3页
广东省江门市江海区2022-2023学年数学九上期末达标测试试题含解析_第4页
广东省江门市江海区2022-2023学年数学九上期末达标测试试题含解析_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.2.在10张奖券中,有2张中奖,某人从中任抽一张,则他中奖的概率是()A. B. C. D.3.若一个圆内接正多边形的内角是,则这个多边形是()A.正五边形 B.正六边形 C.正八边形 D.正十边形4.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位5.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.6.如图是某体育馆内的颁奖台,其左视图是()A. B.C. D.7.下列式子中,y是x的反比例函数的是()A. B. C. D.8.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.9.下列是随机事件的是()A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B.平行于同一条直线的两条直线平行C.掷一枚图钉,落地后图钉针尖朝上D.掷一枚质地均匀的骰子,掷出的点数是710.如图,反比例函数y=与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则b﹣a=()A.8 B.﹣8 C.4 D.﹣4二、填空题(每小题3分,共24分)11.方程的根是__________.12.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.13.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.14.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.15.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.16.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.17.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.18.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.三、解答题(共66分)19.(10分)2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至处,观测指挥塔位于南偏西方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达处,再观测指挥塔位于南偏西方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)20.(6分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.21.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:EB=DC;(2)连接DE,若∠BED=50°,求∠ADC的度数.22.(8分)如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.(1)求证:CD是⊙O的切线.(2)若CD=6,求BC的长.(3)若⊙O的半径为4,则四边形ABCD的最大面积为.23.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,24.(8分)(定义)在平面直角坐标系中,对于函数图象的横宽、纵高给出如下定义:当自变量x在范围内时,函数值y满足.那么我们称b-a为这段函数图象的横宽,称d-c为这段函数图象的纵高.纵高与横宽的比值记为k即:.(示例)如图1,当时;函数值y满足,那么该段函数图象的横宽为2-(-1)=1,纵高为4-1=1.则.(应用)(1)当时,函数的图象横宽为,纵高为;(2)已知反比例函数,当点M(1,4)和点N在该函数图象上,且MN段函数图象的纵高为2时,求k的值.(1)已知二次函数的图象与x轴交于A点,B点.①若m=1,是否存在这样的抛物线段,当()时,函数值满足若存在,请求出这段函数图象的k值;若不存在,请说明理由.②如图2,若点P在直线y=x上运动,以点P为圆心,为半径作圆,当AB段函数图象的k=1时,抛物线顶点恰好落在上,请直接写出此时点P的坐标.25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.26.(10分)在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.2、D【分析】根据概率的计算方法代入题干中的数据即可求解.【详解】由题意知:概率为,故选:D【点睛】此题考查概率的计算方法:即发生事件的次数除以总数即可.3、A【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解.【详解】解:∵圆内接正多边形的内角是,∴该正多边形每个外角的度数为,∴该正多边形的边数为:,故选:A.【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.4、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.5、C【解析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.6、D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法.7、C【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.【详解】A、是正比例函数,错误;B、不是反比例函数,错误;C、是反比例函数,正确;D、不是反比例函数,错误.故选:C.【点睛】本题考查反比例函数的定义特点,反比例函数解析式的一般形式为:y=(k≠0).8、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.9、C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B.平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C.掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D.掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【分析】根据反比例函数系数k的几何意义得到|a|=S矩形ADOE,|b|=S矩形BCOE,进而得到|b|+|a|=8,然后根据a<0,b>0可得答案.【详解】解:如图,∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面积为8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函数y=在第二象限,反比例函数y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故选:A.【点睛】本题考查了反比例函数y=(k≠0)的系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题(每小题3分,共24分)11、,【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x2=3xx2﹣3x=0即x(x﹣3)=0∴,故本题的答案是,.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.12、1【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【详解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交点坐标为(0,2)和(1,2),所以截得的线段长为1﹣0=1,故答案为:1.【点睛】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.13、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14、1.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【详解】因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故一次就拨对的概率小于,密码的位数至少需要1位.故答案为1.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.16、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.17、5【解析】由翻折的性质可以知道,由矩形的性质可以知道:,从而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的长.【详解】由折叠的性质知,CD=ED,BE=BC.

四边形ABCD是矩形,

在和中,

,

,

;

设BF=x,则DF=x,AF=8-x,

在中,可得:,即,

计算得出:x=5,

故BF的长为5.

因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质.18、1.【详解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为1.点睛:同一时刻,物体的高度与影长的比相等.三、解答题(共66分)19、【分析】过P作PH⊥MN于H,构建直角三角形,设PH=x海里,分别在两个直角三角形△PHN和△PHM中利用正切函数表示出NH长和MH长,列方程求解.【详解】过P作PH⊥MN,垂足为H,设PH=x海里,在Rt△PHN,tan∠PNH=,∴tan45°=,∴NH=,在Rt△PHM中,tan∠PMH=,∴tan30°=,∴MH=,∵MN=30×2=60海里,∴,∴.答:“山东舰”与指挥塔之间的最近距离为海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.20、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)连接OC交BD于G,设,根据垂径定理的推论可得出OC垂直平分BD,进而推出OG为中位线,再判定,利用对应边成比例即可求出的值;(3)连接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,设,则,再判定,利用对应边成比例求出m的值,进而得到AB和AD的长,再用勾股定理求出BD,可求出△BED的面积,由C为DE的中点可得△BEC为△BED面积的一半,即可得出答案.【详解】(1)证明:∵AD是的直径∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如图,连接OC交BD于G,,设,则,OC=AD=∴OC垂直平分BD又∵O为AD的中点∴OG为△ABD的中位线∴OC∥AB,OG=,CG=(3)如图,连接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴设,则又,∴,∵AD是的直径又【点睛】本题考查了圆周角定理,垂径定理的推论,全等三角形的判定和性质,相似三角形的判定和性质,以及勾股定理,是一道圆的综合问题,解题的关键是连接OC利用垂径定理得到中位线.21、(1)证明见解析;(2)110°【分析】(1)根据等边三角形的性质可得∠BAC=60°,AB=AC,由旋转的性质可得∠DAE=60°,AE=AD,利用SAS即可证出≌,从而证出结论;(2)根据等边三角形的判定定理可得为等边三角形,从而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出结论.【详解】解:(1)∵是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如图,由(1)得∠DAE=60°,AE=AD,∴为等边三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【点睛】此题考查的是等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质,掌握等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解决此题的关键.22、(1)证明见解析;(2);(3).【分析】(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形ABCD的面积最大,当OA⊥BD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论.【详解】解:(1)证明:连接、,四边形为圆内接四边形,,,,又点在上,是的切线;(2)由(1)知:又,,设为,则为,在中,,即,,又,,;(3)连接,,,,,,,,,,,当四边形的面积最大时,四边形的面积最大,当时,四边形的面积最大,四边形的最大面积,故答案为:.【点睛】本题考查了圆的综合题,切线的判定,勾股定理,三角形的面积的计算,正确的作出辅助线是解题的关键.23、(1);(2)【分析】(1)直接根据概率公式计算可得;

(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,

所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,

故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24、(1)2,4;(2),2;(1)①存在,k=1;②或或【分析】(1)当时,函数的函数值y满足从而可以得出横宽和纵高;(2)由题中MN段函数图象的纵高为2,进而进行分类讨论N的y值为2以及6的情况,再根据题中对k值定义的公式进行计算即可;(1)①先求出函数的解析式及对称轴及最大值,根据函数值满足确定b的取值范围,并判断此时函数的增减性,确定两个端点的坐标,代入函数解析式求解即可;②先求出A、B的坐标及顶点坐标,根据k=1求出m的值,分两种情况讨论即可.【详解】(1)当时,函数的函数值y满足,从而可以得出横宽为,纵高为故答案为:2,4;(2)将M(1,4)代入,得n=12,纵高为2,令y=2,得x=6;令y=6,x=2,,.(1)①存在,,解析式可化为,当x=2时,y最大值为4,,解得,当时,图像在对称轴左侧,y随x的增大而增大,当x=a时,y=2a;当x=b时,y=1b,将分别代入函数解析式,解得(舍),(舍),,②,,,理由是:A(0,0),B(4,0),顶点K(2,4m),AB段函数图像的k=1,,m=1或-1,二次函数为或,过顶点K和P点分别作x轴、y轴的垂线,交点为H.i)若二次函数为,如图1,设P的坐标为(x,x),则KH=,PH=,在中,,即解得,ii)若二次函数为,如图2,设P的坐标为(x,x),则,在中,,解得x=-1,【点睛】本题考查的是新定义问题,是中考热门题型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论