版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A.主视图会发生改变 B.俯视图会发生改变C.左视图会发生改变 D.三种视图都会发生改变2.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米3.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y24.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如果函数的图象与双曲线相交,则当时,该交点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°7.如图,某同学用圆规画一个半径为的圆,测得此时,为了画一个半径更大的同心圆,固定端不动,将端向左移至处,此时测得,则的长为()A. B. C. D.8.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)9.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)10.抛物线与y轴的交点为()A. B. C. D.11.下列关系式中,是反比例函数的是()A.y= B.y= C.xy=﹣ D.=112.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,RtABC中,∠C=90°,AC=10,BC=1.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为_____.14.如图,△ABC内接于⊙O,若∠A=α,则∠OBC=_____.15.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.16.当时,函数的最大值是8则=_________.17.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.18.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.三、解答题(共78分)19.(8分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:(尝试)(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为;(2)判断点A是否在抛物线L上;(3)求n的值;(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为.(应用)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.20.(8分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.21.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.22.(10分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.7523.(10分)如图,是的直径,且,点为外一点,且,分别切于点、两点.与的延长线交于点.(1)求证:;(2)填空:①当__________时,四边形是正方形.②当____________时,为等边三角形.24.(10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.25.(12分)如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=ycm,宽HE=xcm.求y与x的函数关系式;(2)当x为何值时,矩形EFGH的面积S最大?最大值是多少?26.综合与探究:已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)求证:△ABC为直角三角形;(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.2、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为解得,x=4.1.
故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.3、A【分析】根据函数解析式画出抛物线以及在图象上标出三个点的位置,根据二次函数图像的增减性即可得解.【详解】∵函数的解析式是,如图:∴对称轴是∴点关于对称轴的点是,那么点、、都在对称轴的右边,而对称轴右边随的增大而减小,于是.故选:A.【点睛】本题考查了二次函数图象的对称性以及增减性,画出函数图像是解题的关键,根据题意画出函数图象能够更直观的解答.4、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【分析】直线的图象经过一、三象限,而函数y=2x的图象与双曲线y(k≠0)相交,所以双曲线也经过一、三象限,则当x<0时,该交点位于第三象限.【详解】因为函数y=2x的系数k=2>0,所以函数的图象过一、三象限;又由于函数y=2x的图象与双曲线y(k≠0)相交,则双曲线也位于一、三象限;故当x<0时,该交点位于第三象限.故选:C.【点睛】本题考查了反比例函数的图象和性质以及正比例函数的图象和性质,要掌握它们的性质才能灵活解题.6、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,
∴∠ACB=∠AOB=100°=50.
故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.7、A【分析】△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.【详解】解:在等腰直角△OAB中,AB=1,则OA=cm,AO'=cm,∠AO'D=×120°=60°,
过O'作O'D⊥AB于点D.
则AD=AO'•sin60°=2×=.
则AB'=2AD=2,
故BB'=AB'-AB=2-1.
故选:A.【点睛】本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.8、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.9、A【详解】解:∵线段AB的两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(-2,-3).故选A.10、C【解析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,
∴抛物线与y轴的交点为(0,3),
故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.11、C【解析】反比例函数的一般形式是y=(k≠0).【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误.故选C.【点睛】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是y=(k≠0).12、C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.故选C.考点:动点问题的函数图象.二、填空题(每题4分,共24分)13、【分析】作NH⊥BC于H.首先证明∠PEC=∠NEB=∠NBE,推出EH=BH,根据cos∠PEC=cos∠NEB,推出=,由此构建方程解决问题即可.【详解】解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴=,∵EF∥AC,∴=,∴=,∴EF=EN=(1﹣3t),∴=,整理得:63t2﹣960t+100=0,解得t=或(舍弃),故答案为:.【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14、90°﹣α.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【详解】连接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案为:.【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.15、【分析】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足条件,从而求算概率.【详解】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足:一共有:,,、,、,三种情况,满足条件的有,、,两种,∴能够让灯泡发光的概率为:故答案为:.【点睛】本题考查概率运算,分析出所有可能的结果,寻找出满足条件的情况是解题关键.16、或【分析】先求出二次函数的对称轴,根据开口方向分类讨论决定取值,列出关于a的方程,即可求解;【详解】解:函数,则对称轴为x=2,对称轴在范围内,当a<0时,开口向下,有最大值,最大值在x=2处取得,即=8,解得a=;当a>0时,开口向上,最大值在x=-3处取得,即=8,解得a=;故答案为:或;【点睛】本题主要考查了二次函数的最值,掌握二次函数的性质是解题的关键.17、【解析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出的值.【详解】如图:过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,则E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直线OB的解析式y=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直线OA的解析式y=x,∴F(,2a),∴==,故答案为:【点睛】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.18、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.三、解答题(共78分)19、[尝试](1)(1,﹣2);(2)点A在抛物线L上;(3)n=1;[发现](2,0),(﹣1,1);[应用]不是,理由见解析.【分析】[尝试]
(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;
(2)将点A的坐标代入抛物线L直接进行验证即可;
(3)已知点B在抛物线L上,将该点坐标代入抛物线L的解析式中直接求解,即可得到n的值.
[发现]
将抛物线L展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.
[应用]
将[发现]中得到的两个定点坐标代入二次函数y=-3x2+5x+2中进行验证即可.【详解】解:[尝试](1)∵将t=2代入抛物线L中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).(2)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线L上.(3)将x=﹣1代入抛物线L的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=1.[发现]∵将抛物线L的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4当x=2时,y=0,当x=-1时,y=1,与t无关,∴抛物线L必过定点(2,0)、(﹣1,1).[应用]将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣1≠1,即可得抛物线y=﹣3x2+5x+2不经过点B,∴二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.【点睛】本题考查二次函数的新型定义问题,熟练掌握二次函数的图像与性质,理解“再生二次函数”的定义是解题的关键.20、(1)75;4;(2)CD=4.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.21、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.22、120m【分析】在Rt△ACD和Rt△BCD中,设CD=x,分别用x表示AD和BD的长度,然后根据已知AB=40m,列出方程求出x的值,继而可求得气球离地面的高度.【详解】设CD=x,在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠A=37°,∴tan37°=,∴AD=,∵AB=40m,∴AD﹣BD=﹣x=40,解得:x=120,∴气球离地面的高度约为120(m).答:气球离地面的高度约为120m.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数解直角三角形.23、(1)见解析;(2)①;②【分析】(1)由切线长定理可得MC=MA,可得∠MCA=∠MAC,由余角的性质可证得DM=CM;(2)①由正方形性质可得CM=OA=3;②由等边三角形的性质可得∠D=60,再由直角三角形的性质可求得答案.【详解】证明:(1)如图,连接,,分别切于点、两点,,,,,是直径,,,,,,,(2)①四边形是正方形,,当时,四边形是正方形,②若是等边三角形,,且,,,,,当时,为等边三角形.【点睛】本题是圆的综合题,考查了切线长定理,直角三角形的性质,正方形的性质,等边三角形的性质等知识,熟练运用这些性质进行推理是正确解答本题的关键.24、(1)60;60;(2)证明见解析;(3).【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用(1)中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用(2)证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案为60,60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM≌△BCP;(3)作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CPAM=BP,又∠M=60°,∴△PCM为等边三角形,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智慧农业项目承包合同10篇
- 2025年度海参养殖基地环境保护与生态补偿合同3篇
- 2025年度昌平区校园食堂承包项目竞争性磋商合同3篇
- 2025年度新能源汽车充电车位分期付款租赁合同4篇
- 2025年度现代化猪栏设施租赁合同3篇
- 2025年度商业物业承包经营合同范本4篇
- 2025年度新能源汽车融资租赁合同范本3篇
- 2025年度宠物店宠物购买合同附宠物用品租赁服务合同3篇
- 2025年度海绵城市建设项目特许经营合同3篇
- 2025年度商业步行街摊位租赁及商业管理合同4篇
- 亚硝酸钠安全标签
- pcs-985ts-x说明书国内中文版
- GB 11887-2012首饰贵金属纯度的规定及命名方法
- 小品《天宫贺岁》台词剧本手稿
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
- 燃烧机论文定型机加热论文:天然气直燃热风技术在定型机中的应用
评论
0/150
提交评论