2023届安徽省宿州市九年级数学第一学期期末学业水平测试试题含解析_第1页
2023届安徽省宿州市九年级数学第一学期期末学业水平测试试题含解析_第2页
2023届安徽省宿州市九年级数学第一学期期末学业水平测试试题含解析_第3页
2023届安徽省宿州市九年级数学第一学期期末学业水平测试试题含解析_第4页
2023届安徽省宿州市九年级数学第一学期期末学业水平测试试题含解析_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.函数y=与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.2.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个3.抛物线的顶点坐标是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)4.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个5.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.526.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1098.如图,菱形ABCD与等边△AEF的边长相等,且E、F分别在BC、CD,则∠BAD的度数是()A.80° B.90° C.100° D.120°9.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°10.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④11.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若,,以顶点为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A. B. C. D.12.如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是()A.经过点B和点E B.经过点B,不一定经过点EC.经过点E,不一定经过点B D.不一定经过点B和点E二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.14.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.15.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.16.如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,对称轴与x轴交于点D,若点P为y轴上的一个动点,连接PD,则的最小值为________.17.若反比例函数y=的图象与一次函数y=﹣x+3的图象的一个交点到x轴的距离为1,则k=_____.18.计算:cos245°-tan30°sin60°=______.三、解答题(共78分)19.(8分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).20.(8分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.21.(8分)某公司营销两种产品,根据市场调研,确定两条信息:信息1:销售种产品所获利润(万元)与所销售产品(吨)之间存在二次函数关系,如图所示信息2:销售种产品所获利润(万元)与销售产品(吨)之间存在正比例函数关系根据以上信息,解答下列问题:(1)求二次函数的表达式;(2)该公司准备购进两种产品共10吨,请设计一个营销方案使销售两种产品获得的利润之和最大,最大利润是多少万元?22.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB∶BD=.(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.23.(10分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=4,OC=5,求AO的长.24.(10分)关于的一元二次方程(1)若方程的一个根为1,求方程的另一个根和的值(2)求证:不论取何实数,方程总有两个不相等的实数根.25.(12分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,求抛物线的函数表达式;若点是直线下方的抛物线上的动点,求的面积的最大值;若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.26.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.

参考答案一、选择题(每题4分,共48分)1、A【解析】当k>0时,双曲线y=的两支分别位于一、三象限,直线y=kx+k的图象过一、二、三象限;当k<0时,双曲线y=的两支分别位于二、四象限,直线y=kx+k的图象过二、三、四象限;由此可得,只有选项A符合要求,故选A.点睛:本题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.反比例函数y=的图象当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.一次函数图象与k、b的关系:①k>0,b>0时,图像经过一二三象限;②k>0,b<0,图像经过一三四象限;③k>0,b=0时,图像经过一三象限,并过原点;④k<0,b>0时,图像经过一二四象限;⑤k<0,b<0时,图像经过二三四象限;⑥k<0,b=0时,图像经过二四象限,并过原点.2、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.3、D【分析】根据顶点式,顶点坐标是(h,k),即可求解.【详解】∵顶点式,顶点坐标是(h,k),∴抛物线的顶点坐标是(1,2).故选D.4、D【解析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.5、C【分析】设平均每天票房的增长率为,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于的一元二次方程.【详解】解:设平均每天票房的增长率为,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、C【解析】试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.7、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.8、C【解析】试题分析:根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故选C.考点:菱形的性质;全等三角形的判定与性质;等边三角形的性质.9、D【解析】∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故选D.点睛:本题是一道考查圆内接四边形性质的题,解题的关键是知道圆内接四边形的性质:“圆内接四边形对角互补”.10、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.11、A【分析】由题意可知C(0,0),且过点(2,3),设该抛物线的解析式为y=ax2,将两点代入即可得出a的值,进一步得出解析式.【详解】根据题意,得该抛物线的顶点坐标为C(0,0),经过点(2,3).设该抛物线的解析式为y=ax2.3=a22.a=.该抛物线的解析式为y=x2.故选A.【点睛】本题考查了二次函数的应用,根据题意得出两个坐标是解题的关键.12、B【分析】由条件可知BC垂直平分AD,可证△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°则A、B、D、C四点共圆,即可得结论.【详解】解:如图:设AD、BC交于M∵AC=CD,AD⊥BC∴M为AD中点∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四点共圆∴优弧CAD经过B,但不一定经过E故选B【点睛】本题考查了四点共圆,掌握四点共圆的判定是解题的关键.二、填空题(每题4分,共24分)13、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.14、-1【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-1,故答案为-1.15、【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,16、【分析】连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.由锐角三角函数的知识可知PC=PE,然后通过证明△CDO∽△AED,利用相似三角形的性质求解即可.【详解】解:连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.当x=0时,y=3,∴C(0,3).当y=0时,0=-x2+2x+3,∴x1=3,x2=-1,∴A(-1,0)、B(3,0),∴OA=1,OC=3,∴AC=,∵二次函数y=-x2+2x+3的对称轴是直线x=1,∴D(1,0),∴点A与点D关于y轴对称,∴sin∠ACO=,由对称性可知,∠ACO=∠OCD,PA=PD,CD=AC=,∴sin∠OCD=,∵sin∠OCD=,∴PC=PE,∵PA=PD,∴PC+PD=PE+PA,∵∠CDO=∠ADE,∠COD=AED,∴△CDO∽△AED,∴,∴,∴;故答案为.【点睛】本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,锐角三角函数的知识,勾股定理,轴对称的性质,相似三角形的判定与性质等知识,难度较大,属中考压轴题.17、2或﹣1【分析】分反比例函数y=在第一象限和第四象限两种情况解答.【详解】解:当反比例函数y=在第一象限时,﹣x+3=1,解得x=2,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(2,1),∴k=2×1=2;当反比例函数y=在第四象限时,﹣x+3=﹣1,解得x=1,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(1,﹣1),∴k=1×(﹣1)=﹣1.∴k=2或﹣1.故答案为:2或﹣1【点睛】本题主要考察反比例函数和一次函数的交点问题,分象限情况作答是解题关键.18、0【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共78分)19、(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.20、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可.试题解析:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:.题2:列表得:

锁1

锁2

钥匙1

(锁1,钥匙1)

(锁2,钥匙1)

钥匙2

(锁1,钥匙2)

(锁2,钥匙2)

钥匙3

(锁1,钥匙3)

(锁2,钥匙3)

所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3).考点:随机事件.21、(1);(2)购进A产品6吨,购进B产品4吨,利润之和最大,最大为6.6万元【分析】(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx+c,再利用待定系数法求解可得;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=−0.1m2+1.5m+0.3(10−m),配方后根据二次函数的性质即可知最值情况.【详解】解:(1)设二次函数的表达式为y=ax2+bx+c,

由图象,得抛物线过点(0,0),(1,1.4),(3,3.6),

将三点的坐标代入表达式,

得,

解得

所以二次函数的表达式为y=−0.1x2+1.5x;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,

则W=−0.1m2+1.5m+0.3(10−m),

=−0.1m2+1.2m+3,

=−0.1(m−6)2+6.6,

∵−0.1<0,

∴∴当m=6时,W取得最大值,最大值为6.6万元,

答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.【点睛】本题主要考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A产品的吨数的关系式是解题的关键.22、(1);(2).【分析】(1)过D点作DE⊥AB于点E,根据相似三角形的判定易证△BDE∽△BAC,可得,再根据角平分线的性质可得DE=CD,利用等量代换即可得到tan∠DAC的值;(2)先利用特殊角的三角形函数得到∠CAD=30°,进而得到∠B=30°,根据直角三角形中30°角所对直角边为斜边的一半得到DE的长,进而得到CD与AC的长,再利用三角形的面积公式求解即可.【详解】解:(1)如图,过D点作DE⊥AB于点E,在△BDE与△BAC中,∠BED=∠C=90°,∠B=∠B,∴△BDE∽△BAC,∴,∵AD是∠BAC的平分线,∴DE=CD,∴,∴tan∠DAC;(2)∵tan∠DAC,∴∠DAC=30°,∴∠BAC=2∠DAC=60°,∴∠B=90°﹣∠BAC=30°,∴DE=BD=2,∴CD=DE=2,∴BC=BD+CD=6,∵,∴,∴S△ABC=.【点睛】本题主要考查锐角三角函数,角平分线的性质,相似三角形的判定与性质,解此题的关键在于熟练掌握根据角平分线的性质作出辅助线.23、(1)60°;(2)【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;

(2)由旋转的性质得:AD=OB=1,结合题意得到∠ADO=90°.则在Rt△AOD中,由勾股定理即可求得AO的长.【详解】(1)由旋转的性质得:CD=CO,∠ACD=∠BCO.∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD为等边三角形,∴∠ODC=60°.(2)由旋转的性质得:AD=OB=1.∵△OCD为等边三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=.【点睛】本题考查旋转的性质、等边三角形的性质和勾股定理,解题的关键是掌握旋转的性质、等边三角形的性质和勾股定理.24、(1),另一个根是;(2)详见解析.【分析】(1)代入x=1求出m值,从而得出方程,解方程即可;

(2)根据方程的系数结合根的判别式,即可得出△>0,由此可证出:不论m取何实数,此方程都有两个不相等的实数根.【详解】解:(1)把代入原方程得解得:当时,原方程为解得:∴方程的另一个根是(2)证明:∵∴∴不论取何实数,此方程都有两个不相等的实数根.【点睛】本题考查了根的判别式以及一元二次方程的解,由判别式的符号得到方程根的情况是解题的关键.25、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.【分析】(1)先由抛物线的对称性确定点B坐标,再利用待定系数法求解即可;(2)先利用待定系数法求得直线BC的解析式,然后设出点P的横坐标为t,则可用含t的代数式表示出PE的长,根据面积的和差可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论