版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列事件是必然事件的为()A.明天早上会下雨 B.任意一个三角形,它的内角和等于180°C.掷一枚硬币,正面朝上 D.打开电视机,正在播放“义乌新闻”2.若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.43.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度()A.变大 B.变小 C.不变 D.不能确定4.若点都是反比例函数图像上的点,并且,则下列结论中正确的是()A. B.C.随的增大而减小 D.两点有可能在同一象限5.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.根据下表中的二次函数y=ax2+bx+c的自变量x与函数yx
…
-1
0
1
2
…
y
…
-1
-7-2
-7…A.只有一个交点 B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧 D.无交点7.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB8.已知二次函数y=mx2+x+m(m-2)的图像经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定9.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.10.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.11.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,无最小值12.已知二次函数,当时,该函数取最大值8.设该函数图象与轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.一元二次方程2x2+3x+1=0的两个根之和为__________.14.点(2,3)关于原点对称的点的坐标是_____.15.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.16.若3a=4b(b≠0),则=_____.17.请写出一个一元二次方程,使它的两个根分别为2,﹣2,这个方程可以是_____.18.已知,=________.三、解答题(共78分)19.(8分)已知函数解析式为y=(m-2)(1)若函数为正比例函数,试说明函数y随x增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限20.(8分)在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.(1)如图1,求证:弧AC等于弧CD;(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.21.(8分)解一元二次方程:.22.(10分)在面积都相等的一组三角形中,当其中一个三角形的一边长为1时,这条边上的高为1.(1)①求关于的函数解析式;②当时,求的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?23.(10分)如图内接于,,CD是的直径,点P是CD延长线上一点,且.求证:PA是的切线;若,求的直径.24.(10分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.25.(12分)某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?26.如图,已知是一次函数的图象与反比例函数的图象的两个交点(1)求此反比例函数和一次函数的解析式.(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.
参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用随机事件以及必然事件的定义分析得出答案.【详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180°,是必然事件,符合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意.故选:B.【点睛】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键.2、B【分析】根据同类二次根式的概念可得关于n的方程,解方程可求得n的值,再根据二次根式有意义的条件进行验证即可得.【详解】由题意:n2-2n=n+4,解得:n1=4,n2=-1,当n=4时,n2-2n=8,n+4=8,符合题意,当n=-1时,n2-2n=3,n+4=3,符合题意,故选B.【点睛】本题考查了同类二次根式,二次根式有意义的条件,解一元二次方程等知识,熟练掌握和灵活运用相关知识是解题的关键.3、C【分析】四边形PAOB是扇形OMN的内接矩形,根据矩形的性质AB=OP=半径,所以AB长度不变.【详解】解:∵四边形PAOB是扇形OMN的内接矩形,
∴AB=OP=半径,
当P点在弧MN上移动时,半径一定,所以AB长度不变,
故选:C.【点睛】本题考查了圆的认识,矩形的性质,用到的知识点为:矩形的对角线相等;圆的半径相等.4、A【分析】根据反比例函数的图象及性质和比例系数的关系,即可判断C,然后根据即可判断两点所在的象限,从而判断D,然后判断出两点所在的象限即可判断B和A.【详解】解:∵中,-6<0,∴反比例函数的图象在二、四象限,在每一象限,y随x的增大而增大,故C错误;∵∴点在第四象限,点在第二象限,故D错误;∴,故B错误,A正确.故选A.【点睛】此题考查的是反比例函数的图象及性质,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.5、C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.7、C【解析】试题分析:∵∠A=∠A,∴当∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB时,△ABE和△ACD相似.故选C.考点:相似三角形的判定.8、C【分析】根据题意将(0,0)代入解析式,得出关于m的方程,解之得出m的值,由二次函数的定义进行分析可得答案.【详解】解:∵二次函数y=mx1+x+m(m-1)的图象经过原点,∴将(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函数的二次项系数m≠0,∴m=1.故选:C.【点睛】本题考查二次函数图象上点的坐标特征以及二次函数的定义,熟练掌握二次函数图象上的点满足函数解析式及二次函数的定义是解题的关键.9、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.10、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.11、C【详解】由图像可知,当x=1时,y有最大值2;当x=4时,y有最小值-2.5.故选C.12、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【详解】∵二次函数,当时,该函数取最大值8∴,当y=0时,∴∵∴∴∴故选:B【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.二、填空题(每题4分,共24分)13、-【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:14、(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).15、15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.16、【分析】依据3a=4b,即可得到a=b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=b,∴===.故答案为:.【点睛】本题主要考查了比例的性质,求出a=b是解题的关键.17、x2﹣4=0【分析】根据一元二次方程的根与系数的关系,即可求出答案【详解】设方程x2﹣mx+n=0的两根是2,﹣2,∴2+(﹣2)=m,2×(﹣2)=n,∴m=0,n=﹣4,∴该方程为:x2﹣4=0,故答案为:x2﹣4=0【点睛】本题主要考查一元二次方程的根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根x1,x2与系数的关系:x1+x2=,x1x2=,是解题的关键.18、【分析】先去分母,然后移项合并,即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是掌握解二元一次方程的方法.三、解答题(共78分)19、(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得-2=-1,求出m即可确定函数解析式和图像所在象限.【详解】解:(1)若为正比例函数则-2=1,m=±,∴m-2<0,函数y随x增大而减小;(2)若函数为二次函数,-2=2且m-2≠0,∴m=-2,函数解析式为y=-4x2,开口向下(3)若函数为反比例函数,-2=-1,m=±1,m-2<0,解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键.20、(1)详见解析;(2)详见解析;(3)4.【分析】(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.【详解】(1)证明:连接BC、CD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CAB+∠CAD=90°,∴∠CBA=∠CAD,又∵∠CDA=∠CBA,∴∠CDA=∠CAD,∴AC=CD,∴;(2)过点C作CG⊥AD于点G,则∠CGA=90°,由(1)知AC=CD,∴CG垂直平分AD,∴AD=2AG,∵AF=CF,∴∠CAD=∠ACE,∵∠CAD+∠CAB=90°,∴∠ACE+∠CAB=90°,∴∠AEC=90°=∠CGA,∵AC=CA,∴△ACG≌△CAE(AAS),∴AG=CE,∴AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,∴∠OHB=90°=∠CEO,∵OA=OB,∴OH是△ABD的中位线,∴AD=2OH,由(2)知AD=2CE,∴OH=CE,∵OC=OB,∴Rt△OEC≌Rt△BHO(HL),∴OE=BH=6,∴OC=OA=AE+OE=4+6=10,∴在Rt△OEC中,CE2=OC2﹣OE2=82,∴在Rt△AEC中,AC==4.【点睛】本题考查了圆的有关概念及性质、全等三角形的判定与性质、勾股定理等,第证明∠AEC=90°和通过作适当的辅助线构造全等三角形是.解题的关键.21、,.【分析】根据因式分解法即可求解.【详解】解:∴x-1=0或2x-1=0解得,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.22、(1)①;②;(2)小明的说法不正确.【分析】(1)①直接利用三角形面积求法进而得出y与x之间的关系;②直接利用得出y的取值范围;
(2)直接利用的值结合根的判别式得出答案.【详解】(1)①,
∵为底,为高,
∴,
∴;
②当时,,
∴当时,的取值范围为:;(2)小明的说法不正确,理由:根据小明的说法得:,整理得:,∵,,,∴,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【点睛】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.23、(1)详见解析;(2)的直径为.【解析】连接OA,根据圆周角定理求出,再根据同圆的半径相等从而可得,继而根据等腰三角形的性质可得出,继而由,可得出,从而得出结论;利用含的直角三角形的性质求出,可得出,再由,可得出的直径.【详解】连接OA,如图,,,又,,又,,,,是的切线.在中,,,又,,,.的直径为.【点睛】本题考查了切线的判定、圆周角定理、含30度角的直角三角形的性质,熟练掌握切线的判定定理、圆周角定理及含30度角的直角三角形的性质是解题的关键.24、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可.试题解析:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:.题2:列表得:
锁1
锁2
钥匙1
(锁1,钥匙1)
(锁2,钥匙1)
钥匙2
(锁1,钥匙2)
(锁2,钥匙2)
钥匙3
(锁1,钥匙3)
(锁2,钥匙3)
所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3).考点:随机事件.25、(1)A种款式的服装采购了65件,B种款式的服装采购了1件;(2)A种款式的服装最多能采购2件.【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金属加工行业焊工管理方法
- 垃圾处理厂投标模板
- 美容院物资存储区域安全检查
- 离婚债务清算协议
- 2024年铲车驾驶员健康保障合同
- 实习合同范本
- 初级中学安保人员管理合同
- 泥工安装施工合同
- 体育竞赛打架私了协议书
- 航空航天律师服务合同样本
- 2024年国家新闻出版广电总局直属事业单位招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 进口电子元器件管理办法
- 电熔焊作业指导书
- 【基于FCFF模型的拼多多企业价值评估案例11000字(论文)】
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- DB11∕T 2035-2022 供暖民用建筑室温无线采集系统技术要求
- 农产品免税申请书
- GIS组合电器概述
- 2024年天津生态城投资开发有限公司招聘笔试参考题库附带答案详解
- 水厂分布式光伏项目(设备采购)实施组织方案及售后服务方案
- 催化材料智慧树知到期末考试答案2024年
评论
0/150
提交评论