2023届山西省朔州市朔城区四中学数学八上期末预测试题含解析_第1页
2023届山西省朔州市朔城区四中学数学八上期末预测试题含解析_第2页
2023届山西省朔州市朔城区四中学数学八上期末预测试题含解析_第3页
2023届山西省朔州市朔城区四中学数学八上期末预测试题含解析_第4页
2023届山西省朔州市朔城区四中学数学八上期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若分式的值为0,则的值为()A.1 B.-1 C.1或-1 D.02.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为3.下列图形中,∠1与∠2不是同位角的是()A. B. C. D.4.下列各式中,分式的个数为(),,,,,,A.2个 B.3个 C.4个 D.5个5.如图,直线EF分别与直线AB,CD相交于点G,H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M,则∠3等于()A.60° B.65° C.70° D.130°6.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D.如果点的横坐标和纵坐标互为相反数,那么点在直线的图像上.7.如图,已知AB=AC=BD,则∠1与∠2的关系是()A.3∠1﹣∠2=180° B.2∠1+∠2=180°C.∠1+3∠2=180° D.∠1=2∠28.在化简分式的过程中,开始出现错误的步骤是()A.A B.B C.C D.D9.计算:的结果是()A. B. C. D.10.化简的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.12.如图,在中,是的垂直平分线,,则的周长为______.13.如图,△ABC≌△DEC,∠ACD=28°,则∠BCE=_____°.14.不等式组的解是____________15.已知点P(x,y)是一次函数y=x+4图象上的任意一点,连接原点O与点P,则线段OP长度的最小值为_____.16.已知一组数据:3,3,4,6,6,1.则这组数据的方差是_________.17.当x为_____时,分式的值为1.18.若,则______________.三、解答题(共66分)19.(10分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD.(1)根据作图判断:△ABD的形状是;(2)若BD=10,求CD的长.20.(6分)因为,令=1,则(x+3)(x-2)=1,x=-3或x=2,反过来,x=2能使多项式的值为1.利用上述阅读材料求解:(1)若x﹣4是多项式x2+mx+8的一个因式,求m的值;(2)若(x﹣1)和(x+2)是多项式的两个因式,试求a,b的值;(3)在(2)的条件下,把多项式因式分解的结果为.21.(6分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.22.(8分)如图,三个顶点的坐标分别为A(-2,2),,.(1)画出关于轴对称的;(2)在轴上画出点,使最小.并直接写出点的坐标.23.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.24.(8分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.25.(10分)如图,AB=DE,AC=DF,BE=CF,求证:AB//DE,AC//DF.26.(10分)已知△ABC中,AB=17,AC=10,BC边上得高AD=8,则边BC的长为________

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据分式的概念,分式有意义要求分母不为零,所以分式值为零,即分子为零即可.【详解】,,,故选:A.【点睛】考查分式的定义,理解定义以及有意义的条件是解题的关键.2、A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、B【分析】同位角是“F”形状的,利用这个判断即可.【详解】解:观察A、B、C、D,四个答案,A、C、D都是“F”形状的,而B不是.故选:B【点睛】本题考查基本知识,同位角的判断,关键在于理解同位角的定义.4、B【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】、、分母中含字母,因此是分式;一共有3个;故选B.【点睛】本题考查分式的定义,解题关键是熟练掌握分式的定义.5、B【解析】试题分析:∵∠1=50°,∴∠BGH=180°-50°=130°,∵GM平分∠HGB,∴∠BGM=65°,∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠3=∠BGM=65°(两直线平行,内错角相等).故选B.点睛:本题主要考查了平行线的判定和性质,根据同位角相等,两直线平行得出AB∥CD是解决此题的关键.6、D【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;D.如果点的横坐标和纵坐标互为相反数,那么点在直线的图像上,故D是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.7、A【分析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.8、B【分析】观察解题过程,找出错误的步骤及原因,写出正确的解题过程即可.【详解】上述计算过程中,从B步开始错误,分子去括号时,1没有乘以1.正确解法为:.故选:B.【点睛】本题考查了分式的加减法,熟练掌握运算法则是解答本题的关键.9、C【分析】根据积的乘方的运算法则和单项式乘除法的运算法则计算即可.【详解】故选:C.【点睛】本题主要考查积的乘方和单项式的乘除法,掌握积的乘方的运算法则和单项式乘除法的运算法则是解题的关键.10、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.二、填空题(每小题3分,共24分)11、35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=∠ABC,∠OCE=∠ACE,然后整理可得∠BOC=∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.12、10【分析】首先根据线段垂直平分线的性质,得出AD=CD,然后将的周长进行边长转换,即可得解.【详解】∵是的垂直平分线,∴AD=CD∵,∴的周长为:AB+BD+AD=AB+BD+DC=AB+BC=3+7=10故答案为:10.【点睛】此题主要考查线段垂直平分线的性质,熟练掌握,即可解题.13、1【分析】根据全等三角形对应角相等可得∠ACB=∠DCE,再根据等式的性质两边同时减去∠ACE可得结论.【详解】证明:∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠ACD=∠BCE=1°.故答案是:1.【点睛】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.14、【分析】根据一元一次不等式组解集的确定方法,即可求解.【详解】由,可得:;故答案是:.【点睛】本题主要考查确定一元一次不等式组的解集,掌握确定一元一次不等式组解集的口诀:“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.15、【分析】线段OP长度的最小值,就是O点到直线y=x+4垂线段的长度,求得直线与坐标轴的交点,然后根据三角形面积即可求得线段OP长度的最小值.【详解】解:如图,一次函数y=x+4中,令y=0,求得x=3;令x=0,则y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,线段OP长度的最小值,就是O点到直线y=x+4垂线段的长度,∴OP⊥AB,∵OA•OB=,∴OP=.故答案为.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,三角形的面积,理解“垂线段最短”是本题的解题关键.16、【分析】先求出这组数据的平均数,再根据方差公式即可求出方差.【详解】平均数为:方差为:故答案为:【点睛】本题考查了平均数和方差的计算公式.17、2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,

∴x=2,

当x=2时,2x+1≠1.

∴当x=2时,分式的值是1.

故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.18、【分析】由题意根据实数运算法则化简原式,变形后即可得出答案.【详解】解:,可知,解得.故答案为:.【点睛】本题考查实数的运算,熟练掌握并利用幂运算法则变形是解题的关键.三、解答题(共66分)19、(1)等腰三角形;(2)1【分析】(1)由作图可知,MN垂直平分线段AB,利用垂直平分线的性质即可解决问题.(2)求出∠CAD=30°,利用直角三角形30度的性质解决问题即可.【详解】解:(1)由作图可知,MN垂直平分线段AB,∴DA=DB,∴△ADB是等腰三角形.故答案为等腰三角形.(2)∵∠C=90°,∠B=30°,∴∠CAB=90°﹣30°=60°,∵DA=DB=10,∴∠DAB=∠B=30°,∴∠CAD=30°,∴CD=AD=1.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质,等腰三角形的性质,直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)m=-6;(2);(3)(x-1)(x+2)(x-3)【分析】(1)由已知条件可知,当x=4时,x2+mx+8=1,将x的值代入即可求得;

(2)由题意可知,x=1和x=-2时,x3+ax2-5x+b=1,由此得二元一次方程组,从而可求得a和b的值;

(3)将(2)中a和b的值代入x3+ax2-5x+b,则由题意知(x-1)和(x+2)也是所给多项式的因式,从而问题得解.【详解】解:(1)∵x﹣4是多项式x2+mx+8的一个因式,则x=4使x2+mx+8=1,∴16+4m+8=1,解得m=-6;(2)∵(x﹣1)和(x+2)是多项式的两个因式,则x=1和x=-2都使=1,得方程组为:,解得;(3)由(2)得,x3-2x2-5x+6有两个因式(x﹣1)和(x+2),又,则第三个因式为(x-3),∴x3-2x2-5x+6=(x-1)(x+2)(x-3).故答案为:(x-1)(x+2)(x-3).【点睛】本题考查了分解因式的特殊方法,根据阅读材料仿做,是解答本题的关键.21、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.22、(1)见解析;(2)见解析,Q(0,0).【分析】(1)利用关于y轴对称的点的坐标特征得出A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)连接AC1交y轴于Q点,利用两点之间线段最短可确定此时QA+QC的值最小,然后根据坐标系可写出点Q的坐标.【详解】解:(1)如图,△A1B1C1为所求.(2)如图,Q(0,0).【点睛】本题考查了作图—轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.23、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:.答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30-a)台,则,解得:,即a=15,16,1.故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑1台,电子白板13台.总费用为万元.∴方案三费用最低.(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可.(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解.设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答.24、(1)见解析;(2)存在,当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【分析】(1)由旋转的性质可得CD=CE,∠DCA=∠ECB,由等边三角形的判定可得结论;(2)分四种情况,由旋转的性质和直角三角形的性质可求解.【详解】(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)解:存在,①当0≤t<6s时,由旋转可知,,,若,由(1)可知,△CDE是等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;②当6<t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论