版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是环,方差分别是,,,,你认为谁的成绩更稳定()A.甲 B.乙 C.丙 D.丁2.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0B.﹣1C.1D.720105.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.56.下列分式中,不是最简分式的是()A. B.C. D.7.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为(
)A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)8.一副三角板如图摆放,边DE∥AB,则∠1=()A.135° B.120° C.115° D.105°9.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.10.下列关于一次函数:的说法错误的是()A.它的图象与坐标轴围成的三角形面积是B.点在这个函数的图象上C.它的函数值随的增大而减小D.它的图象经过第一、二、三象限11.若点和点关于轴对称,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限12.如图,是的角平分线,是边上的一点,连接,使,且,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.14.计算的结果等于_____________.15.已知点与点关于直线对称,那么等于______.16.(x2y﹣xy2)÷xy=_____.17.把多项式分解因式的结果是_________.18.若,则___________.三、解答题(共78分)19.(8分)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y,原式=(y+2)(y+6)+4
(第一步)=y2+8y+16
(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的______.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.20.(8分)如图,中,,,垂足为,,,垂足分别是、.(1)求证:;(2)若,写出图中长度是的所有线段.21.(8分)分解因式:4ab2﹣4a2b﹣b1.22.(10分)阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.23.(10分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.24.(10分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.25.(12分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.26.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线x轴于点C,且AB=BC.(1)求直线BC的表达式(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于点P,设点Q的横坐标为m,求的面积(用含m的代数式表示)(3)在(2)的条件下,点M在y轴的负半轴上,且MP=MQ,若求点P的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大可得答案.【详解】解:∵0.35<0.4<0.45<0.55,∴S丁2<S丙2<S甲2<S乙2,丁的成绩稳定,
故选:D.【点睛】此题主要考查了方差,关键是掌握方差的意义,方差越小成绩越稳定.2、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3、C【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.4、C【解析】根据关于关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而得到答案.【详解】∵点A(a,4)、点B(3,b)关于x轴对称,∴a=3,b=﹣4,∴(a+b)2010=(3-4)2010=1.故选C.【点睛】本题考查了关于x轴对称点的坐标特点,关键是掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.5、B【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【点睛】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.6、B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子,分母分解因式,观察互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而约分.【详解】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解:A、是最简分式,不符合题意;B、不是最简分式,符合题意;C、是最简分式,不符合题意;D、是最简分式,不符合题意;故选:B.【点睛】本题主要考查了分式化简中最简分式的判断.7、D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.8、D【分析】根据两直线平行同旁内角互补解答即可.【详解】解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.9、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.10、D【分析】求出一次函数的图象与x轴、y轴的交点坐标,再利用三角形的面积公式可求出与坐标轴围成的三角形面积,可判断A;将点P(3,1)代入表达式即可判断B;根据x的系数可判断函数值随的变化情况,可判断C;再结合常数项可判断D.【详解】解:令x=0,则y=2,令y=0,则x=6,∴图象与坐标轴围成的三角形面积是,故选项A正确;令x=3,代入,则y=1,∴点P(3,1)在函数图象上,故选项B正确;∵<0,∴一次函数的函数值随的增大而减小,故选项C正确;∵<0,2>0,∴它的图象经过第一、二、四象限,故选项D错误.故选D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及三角形的面积,逐一分析四个选项的正误是解题的关键.11、D【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,1)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-1.解得a=1,b=−2.则点C(a,b)在第四象限,故选:D.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-1是解题关键.12、C【分析】根据∠AMB=∠MBC+∠C,想办法求出∠MBC+∠C即可.【详解】解:∵DA=DC,
∴∠DAC=∠C,
∵∠ADB=∠C+∠DAC,
∴∠ADB=2∠C,
∵MB平分∠ABC,
∴∠ABM=∠DBM,
∵∠BAD=130°,
∴∠ABD+∠ADB=50°,
∴2∠DBM+2∠C=50°,
∴∠MBC+∠C=25°,
∴∠AMB=∠MBC+∠C=25°,
故选:C.【点睛】本题考查三角形内角和定理、三角形的外角的性质、等腰三角形的性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.二、填空题(每题4分,共24分)13、八【解析】360°÷(180°-135°)=814、1【解析】根据平方差公式计算即可.【详解】解:原式=3﹣1=1.故答案为1.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.15、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为1.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.16、9x﹣4y+1【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式==9x﹣4y+1.故答案为:9x﹣4y+1.【点睛】本题考查了整式的除法运算,解题关键是正确掌握相关运算法则.17、【分析】先提取公因式m,再利用平方差公式分解即可.【详解】,故答案为:.【点睛】本题考查了因式分解-提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、1【分析】先根据算术平方根的非负性、绝对值的非负性求出a、b的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:,,解得,,则,故答案为:1.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键.三、解答题(共78分)19、(1)C;(2)不彻底,(x-2)1;(3)(x-1)1【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2-2x)看作整体进而分解因式即可.【详解】(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2-1x+1)2=(x-2)1;故答案为:不彻底,(x-2)1;(3)(x2-2x)(x2-2x+2)+1=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)1.【点睛】此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.20、(1)见解析;(2)CF、BE【分析】(1)根据等腰三角形的对称性得到△ABD的面积和△ACD的面积相等,再根据面积公式求出DE=DF.(2)根据题意得出△ABC是等边三角形,即可得出Rt△DEB和Rt△DFC是30°特殊直角三角形,再根据性质求出线段关系即可.【详解】(1)∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,D为BC的中点.根据等腰三角形的性质可知S△ABD=S△ACD,即.∵AB=AC,∴DE=DF.(2)∵∠BAC=60°,AB=AC,∴△ABC是等边三角形.∴BC=AB=AC,∠B=∠C=∠BAC=60°,∴BD=CD=.∵DE⊥AB,DF⊥AC,∴∠BDE=∠CDEF=30°∴EB=,CF=.【点睛】本题考查等腰、等边三角形的性质,特殊直角三角形的性质,关键在于结合图形运用知识.21、﹣b(2a﹣b)2【分析】提公因式﹣b,再利用完全平方公式分解因式.【详解】解:4ab2﹣4a2b﹣b1=﹣b(4a2﹣4ab+b2)=﹣b(2a﹣b)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.22、(1)(2);(3)△ABC是直角三角形,【解析】(1)(2)根据两点间的距离公式即可求解;
(3)先根据两点间的距离公式求出AB,BC,AC的长,再根据勾股定理的逆定理即可作出判断.【详解】(1)(2)(3)△ABC是直角三角形,理由:∵∴∴∴△ABC是直角三角形.【点睛】本题主要考查两点间的距离公式,难度较大,解决本题的关键是熟练掌握两点间的距离公式,两点间的距离公式:若平面内两点M(x1,y1)、N(x2,y2),则MN=.注意熟记公式.23、(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.24、证明见解析【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【详解】∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.【点睛】考点:1.等边三角形的性质;2.三角形内角和定理;3.等腰三角形的判定与性质.25、证明见解析【分析】求出∠BED=∠CFD=90°,根据AAS推出△BED≌△CFD,根据全等三角形的性质得出DE=DF,根据角平分线性质得出即可.【详解】证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴∠BAD=∠CAD.26、(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式;
(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;
(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴点B(0,8),点A(-4,0)
∴AO=4,BO=8,
∵AB=BC,BO⊥AC,
∴AO=CO=4,
∴点C(4,0),
设直线BC解析式为:y=kx+b,
由题意可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焙烤食品制造品牌宣传推广考核试卷
- 成功的学前教育案例分享考核试卷
- 烘焙食品的营销与推广策略考核试卷
- 创新企业教育培训方法考核试卷
- 真空电子器件的量子技术探索考核试卷
- 指静脉识别技术在金融交易中的实际案例解析考核试卷
- 放射性金属矿的环境风险管理考核试卷
- 皮革制品的供应链管理与合作伙伴考核试卷
- 城市公共设施管理的绿色发展策略考核试卷
- 创新科技与绿色建筑设计考核试卷
- 二零二四年物流园区建设合作协议
- 医疗机构舆情应急处置预案
- 2024年度电信设备采购与供应链管理合同
- 2024年度供应商采购框架协议
- 2024年春季学期建筑构造#期末综合试卷-国开(XJ)-参考资料
- 2024年广东省公务员考试《行测》真题及答案解析
- 2024年广东省深圳市33校联考中考英语一模试卷
- 仓储退货部组长年终总结
- 校园及周边安全隐患排查情况登记表
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 部编版(2024)一年级语文上册第7课《两件宝》精美课件
评论
0/150
提交评论