版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中不是中心对称图形的是()A. B. C. D.2.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③3.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼()A.条 B.条 C.条 D.条4.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-15.如图,四边形内接于,为延长线上一点,若,则的度数为()A. B. C. D.6.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=7.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.08.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.9.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上 B.对称轴是y轴C.有最低点 D.在对称轴右侧的部分从左往右是下降的10.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.11.如果二次函数的图像如图所示,那么一次函数的图像经过()A.第一、二、三象限 B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限12.如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3 B.4 C.6 D.9二、填空题(每题4分,共24分)13.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=_____度.14.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.15.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。16.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.17.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.18.点(﹣4,3)关于原点对称的点的坐标是_____.三、解答题(共78分)19.(8分)已知抛物线的对称轴为直线,且经过点(1)求抛物线的表达式;(2)请直接写出时的取值范围.20.(8分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.21.(8分)操作:在△ABC中,AC=BC=4,∠C=90°,将一块直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。如图①、②、③是旋转三角板得到的图形中的3种情况。探究:(1)如图①,PD⊥AC于D,PE⊥BC于E,则重叠部分四边形DCEP的面积为___,周长___.(2)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②加以证明;(3)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。22.(10分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.(1)如图1,若,则__________.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.23.(10分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.24.(10分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.25.(12分)如图,在中,点在边上,且,已知,.(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求的长.26.如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)画出关于轴的对称图形;(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.
参考答案一、选择题(每题4分,共48分)1、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.【点睛】本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.2、B【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.
②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.
③正确.设BC=BE=EC=a,求出AC,BD即可判断.
④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等边三角形,
∴EB=BC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,
∵OA=OC,EA=EB,
∴OE∥BC,
∴∠AOE=∠ACB=90°,
∴EO⊥AC,故①正确,
∵OE∥BC,
∴△OEF∽△BCF,
∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故②错误,
设BC=BE=EC=a,则AB=2a,AC=a,OD=OB=a,
∴BD=a,
∴AC:BD=a:a=:7,故③正确,
∵OF=OB=a,
∴BF=a,
∴BF2=a2,OF•DF=a•a2,
∴BF2=OF•DF,故④正确,
故选:B.【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.3、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.4、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0
因式分解得,x(x-1)=0,
于是,得,x=0或x-1=0,
解得x1=0,x2=1,
故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.5、D【分析】根据圆内接四边形的对角互补,先求出∠ADC的度数,再求∠ADE的度数即可.【详解】解:四边形内接于-,.故选:.【点睛】本题考查的是内接四边形的对角互补,也就是内接四边形的外角等于和它不相邻的内对角.6、D【解析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.7、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,
解得:m=1.
故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.8、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,
∴∠C'CA=∠CAB=64°,
∵将△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC',∠BAB'=∠CAC',
∴∠ACC'=∠C'CA=64°,
∴∠C'AC=180°−2×64°=52°,
故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.9、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x)2+,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=,故选项B错误;当x=时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.10、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【点睛】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.11、B【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,
∴m>0,n<0,
则一次函数y=mx+n经过第一、三、四象限.
故选:B.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解题的关键.12、D【分析】利用位似的性质得到AD:A′D′=OA:OA′=2:3,再利用相似多边形的性质得到得到四边形A′B′C′D′的面积.【详解】解:∵四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,∴AD:A′D′=OA:OA′=2:3,∴四边形ABCD的面积:四边形A′B′C′D′的面积=4:1,而四边形ABCD的面积等于4,∴四边形A′B′C′D′的面积为1.故选:D.【点睛】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.二、填空题(每题4分,共24分)13、1【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案为:1.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.15、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,
∵∠AOB=90°,
∴AB是直径,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵点A的坐标为(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.16、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.17、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.18、(4,﹣3)【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【详解】点(﹣4,3)关于原点对称的点的坐标是(4,﹣3).故答案为(4,﹣3).【点睛】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.三、解答题(共78分)19、(1);(2)或【分析】(1)利用对称轴方程可确定b=-2,把P点坐标代入二次函数解析式可确定c=-3,即抛物线解析式为;(2)根据抛物线的对称性和P(3,0)为x轴上的点,即可求出另一个点的交点坐标,画图,根据图象即可得出结论;【详解】解:(1)根据题意得,,解得,∴抛物线解析式为;(2)函数对称轴为x=1,而P(3,0)位于x轴上,则设与x轴另一交点坐标Q为(m,0),根据题意得:,解得m=−1,则抛物线与x轴的另一个交点Q坐标为(−1,0),由图可得,时的取值范围为:或;【点睛】本题主要考查了抛物线与x轴的交点,待定系数法求二次函数解析式,掌握抛物线与x轴的交点,待定系数法求二次函数解析式是解题的关键.20、(1)y=﹣+2x﹣;(2);(3)存在最大值,此时P点坐标(,).【分析】(1)将A、B两点坐标分别代入抛物线解析式,可求得待定系数a和b,即可确定抛物线解析式;(2)因为圆的切线垂直于过切点的半径,所以过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,根据抛物线解析式求出C点坐标,根据勾股定理求出BC的长,再求出AB的长,利用相似三角形的性质即两个三角形相似,对应线段成比例,可求得AD的长,即为⊙A的半径;(3)先由B,C点坐标求出直线BC解析式,然后过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,因为P在抛物线上,P,Q点横坐标相同,所以可设出P、Q点的坐标,并把PQ的长度表示出来,进而表示出△PQC和△PQB的面积,两者相加就是△PBC的面积,再利用二次函数的性质讨论其最大值,容易求得P点坐标.【详解】解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得:,解得:,∴抛物线解析式为y=﹣+2x﹣;(2)过A作AD⊥BC于点D,如图1:因为圆的切线垂直于过切点的半径,所以AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得:BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴,即,解得AD=,即⊙A的半径为;(3)∵C(0,﹣),∴设直线BC解析式为y=kx﹣,把B点坐标(5,0)代入可求得k=,∴直线BC的解析式为y=x﹣,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,因为P在抛物线上,Q在直线BC上,P,Q两点横坐标相同,所以设P(x,﹣+2x﹣),则Q(x,x﹣),∴PQ=(﹣+2x﹣)﹣(x﹣)=﹣+x=﹣+,∴S△PBC=S△PCQ+S△PBQ=PQ•OE+PQ•BE=PQ(OE+BE)=PQ•OB=PQ=×[﹣+]=,∵<0,∴当x=时,S△PBC有最大值,把x=代入﹣+2x﹣,求出P点纵坐标为,∴△PBC的面积存在最大值,此时P点坐标(,).【点睛】本题考查1.二次函数的综合应用;2.切线的性质;3.相似三角形的判定和性质;4.用待定系数法确定解析式,综合性较强,利用数形结合思想解题是关键.21、(1)4,8;(1)证明见详解;(3)CE=0或1或或;【分析】(1)根据点P是AB的中点可判断出PD、PE是△ABC的中位线,继而可得出PD、PE的长度,也可得出四边形DCEP的周长和面积.(1)先根据图形可猜测PD=PE,从而连接CP,通过证明△PCD≌△PEB,可得出结论.(3)题目只要求是等腰三角形,所以需要分四种情况进行讨论,这样每一种情况下的CE的长也就不难得出.【详解】解:(1)根据△ABC中,AC=BC=4,∠C=90°,∵PD⊥AC,PE⊥BC,∴PD∥BC,PE∥AC,又∵点P是AB中点,∴PD、PE是△ABC的中位线,∴PD=CE=1,PE=CD=1,∴四边形DCEP是正方形,面积为:1×1=4,周长为:1+1+1+1=8;故答案为:4,8(1)PD=PE;证明如下:AC=BC,∠C=90°,P为AB中点,连接CP,∴CP平分∠C,CP⊥AB,∵∠PCB=∠B=45°,∴CP=PB,∵∠DPC+∠CPE=∠CPE+∠EPB=90°,∴∠DPC=∠EPB,在△PCD和△PEB中,,∴△PCD≌△PBE(ASA),∴PD=PE.(3)△PBE是等腰三角形,∵AC=BC=4,∠ACB=90°,∴,∴PB=;①PE=PB时,此时点C与点E重合,CE=0;②当PB=BE时,如图,E在线段BC上,CE=;③当PB=BE时,如图,E在CB的延长线上,CE=;④当PE=BE时,此时,点E是BC中点,则CE=1.综合上述,CE的长为:0或1或或;【点睛】本题考查了旋转的性质、等腰三角形的性质与判定,第三问的解答应分情况进行论证,不能漏解,有一定难度.22、(1)88π;(2)BC长为;S的最小值为.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;
(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10-x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,
∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10-x,∴S=•π•102+•π•x2+•π•(10-x)2=(x2-5x+250)=(x-)2+,当x=时,S取得最小值,∴BC长为;S的最小值为.【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.23、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大版四年级上册数学第三单元 乘法 测试卷及完整答案
- 设备制造监造服务协议
- 设计版权转让合同
- 诚信承诺保证书字数左右
- 详解劳务分包合同及价格
- 语文奥赛三年级提升逻辑思维的挑战
- 货车司机聘用合同格式
- 质量承诺保证书格式
- 购房贷款合同范本版
- 购销合同延期申请
- 药物分析计算题合集
- 翻身拍背护理课件
- 火灾调查专业技能.全国比武单项科目解析
- 人卫慕课《走进肺功能》试题答案
- 重庆市巴南区2022-2023学年六年级上学期期末数学试题
- 人音版初中音乐 九年级上册 中考一轮复习课件
- 主题班会:班风校风主题班会课课件
- 中建污水支管逆作井安全专项施工方案
- 肝硬化食管胃底静脉曲张破裂出血的诊治
- 初中体育《篮球单元计划及体前变向换手运球》教学设计
- 万物之理-爱因斯坦之梦智慧树知到课后章节答案2023年下中国海洋大学
评论
0/150
提交评论