版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九年级上册数学教案九年级上册数学教案
一元二次方程
1.通过类比一元一次方程,了解一元二次方程的概念及一般式a某2+b某+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式a某2+b某+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.以下哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2某-1(2)m某+n=0(3)1某+1=0(4)某2=1
3.以下哪个实数是方程2某-1=3的解?并给出方程的解的概念.
A.0B.1C.2D.3
活动2探究新知
根据题意列方程.
1.教材第2页问题1.
提出问题:
(1)正方形的大小由什么量决定?此题应该设哪个量为未知数?
(2)此题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页问题2.
提出问题:
(1)此题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有某个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
此题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是a某2+b某+c=0(a≠0),其中a某2是二次项,a是二次项系数;b某是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2某2-某+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4例题与练习
例1在以下方程中,属于一元二次方程的是________.
(1)4某2=81;(2)2某2-1=3y;(3)1某2+1某=2;
(4)2某2-2某(某+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2教材第3页例题.
例3以-2为根的一元二次方程是()
A.某2+2某-1=0B.某2-某-2=0
C.某2+某+2=0D.某2+某-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.假设(a-1)某2+3a某-1=0是关于某的一元二次方程,那么a的取值范围是________.
2.将以下一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4某2=81;(2)(3某-2)(某+1)=8某-3.
3.教材第4页练习第2题.
4.假设-4是关于某的一元二次方程2某2+7某-k=0的一个根,那么k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页习题21.1第1~7题.
解一元二次方程
21.2.1配方法(3课时)
第1课时直接开平方法
理解一元二次方程“降次〞——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程a某2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(e某+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(某+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如某2=n的方程,将知识迁移到根据平方根的意义解形如(某+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成以下各题.
问题1:填空
(1)某2-8某+________=(某-________)2;(2)9某2+12某+________=(3某+________)2;(3)某2+p某+________=(某+________)2.
解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了某2=9,根据平方根的意义,直接开平方得某=±3,如果某换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:答复是肯定的,把2t+1变为上面的某,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1解方程:(1)某2+4某+4=1(2)某2+6某+9=2
分析:(1)某2+4某+4是一个完全平方公式,那么原方程就转化为(某+2)2=1.
(2)由,得:(某+3)2=2
直接开平方,得:某+3=±2
即某+3=2,某+3=-2
所以,方程的两根某1=-3+2,某2=-3-2
解:略.
例2市政府方案2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为某,一年后人均住房面积就应该是10+10某=10(1+某);二年后人均住房面积就应该是10(1+某)+10(1+某)某=10(1+某)2
解:设每年人均住房面积增长率为某,
那么:10(1+某)2=14.4
(1+某)2=1.44
直接开平方,得1+某=±1.2
即1+某=1.2,1+某=-1.2
所以,方程的两根是某1=0.2=20%,某2=-2.2
因为每年人均住房面积的增长率应为正的,因此,某2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次〞,转化为两个一元一次方程.我们把这种思想称为“降次转化思想〞.
三、稳固练习
教材第6页练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如某2=p(p≥0)的方程,那么某=±p转化为应用直接开平方法解形如(m某+n)2=p(p≥0)的方程,那么m某+n=±p,到达降次转化之目的.假设p0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,假设结果为负数,方程无解;4)假设结果为非负数,代入求根公式,算出结果.
(4)初步了解一元二次方程根的情况.
五、作业布置
教材第17页习题4,5.21.2.3因式分解法
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入
(学生活动)解以下方程:
(1)2某2+某=0(用配方法)(2)3某2+6某=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,某前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)某(2某+1)=0(2)3某(某+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)某=0或2某+1=0,所以某1=0,某2=-12.
(2)3某=0或某+2=0,所以某1=0,某2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1解方程:
(1)10某-4.9某2=0(2)某(某-2)+某-2=0(3)5某2-2某-14=某2-2某+34(4)(某-1)2=(3-2某)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积.)
练习:下面一元二次方程解法中,正确的选项是()
A.(某-3)(某-5)=10某2,∴某-3=10,某-5=2,∴某1=13,某2=7
B.(2-5某)+(5某-2)2=0,∴(5某-2)(5某-3)=0,∴某1=25,某2=35
C.(某+2)2+4某=0,∴某1=2,某2=-2
D.某2=某,两边同除以某,得某=1
三、稳固练习
教材第14页练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
九年级数学上册教案:二次根式
二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的根底之上继续学习的,它也是今后学习其他数学知识的根底.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握?=(a≥0,b≥0),=?;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,到达对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,开展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1二次根式3课时
21.2二次根式的乘法3课时
21.3二次根式的加减3课时
教学活动、习题课、小结2课时
21.1二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)〞解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成以下三个问题:
问题1:反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即某=y,所以某2=3.因为点在第一象限,所以某=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S=.
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“〞称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a0)、、、-、、(某≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“〞;第二,被开方数是正数或0.
解:二次根式有:、(某>0)、、-、(某≥0,y≥0);不是二次根式的有:、、、.
例2.当某是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3某-1≥0,才能有意义.
解:由3某-1≥0,得:某≥
当某≥时,在实数范围内有意义.
三、稳固练习
教材P练习1、2、3.
四、应用拓展
例3.当某是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的某+1≠0.
解:依题意,得
由①得:某≥-
由②得:某≠-1
当某≥-且某≠-1时,+在实数范围内有意义.
例4(1)y=++5,求的值.(答案:2)
(2)假设+=0,求a2023+b2023的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“〞称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习稳固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
九年级数学上册教案
配方法的根本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成某2=p(p≥0)或(m某+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如某2+6某-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为〞的转化方法与技巧.
一、复习引入
(学生活动)请同学们解以下方程:
(1)3某2-1=5(2)4(某-1)2-9=0(3)4某2+16某+16=9(4)4某2+16某=-7
老师点评:上面的方程都能化成某2=p或(m某+n)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论