




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各式从左到右的变形是因式分解的是()A. B.C. D.2.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE3.如图,在中,,边上的垂直平分线分别交、于点、,若的周长是11,则直线上任意一点到、距离和最小为()A.28 B.18 C.10 D.74.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是(
)A.
B.
C.
D.5.下列分式中,无论x取何值,分式总有意义的是()A. B. C. D.6.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS7.某地连续天高温,其中日最高气温与天数之间的关系如图所示,则这天日最高气温的平均值是()A. B. C. D.8.下列各组中的三条线段(单位:),能围成三角形的是()A.1,2,3 B.2,3,4 C.10,20,35 D.4,4,99.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形10.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,中,,的平分线与边的垂直平分线相交于,交的延长线于,于,现有下列结论:①;②;③平分;④.其中正确的有________.(填写序号)12.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.13.如图,已知点,分别在边和上,点在的内部,平分.若,则的度数为______.14.如图,已知点M(-1,0),点N(5m,3m+2)是直线AB:右侧一点,且满足∠OBM=∠ABN,则点N的坐标是_____.15.若分式的值是0,则x的值为________.16.如图,一次函数与一次函数的图像相交于点,则关于的不等式的解集为__________.17.当______时,分式的值为0.18.若分式值为0,则=______.三、解答题(共66分)19.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.20.(6分)如图,在某一禁毒基地的建设中,准备再一个长为米,宽为米的长方形草坪上修建两条宽为米的通道.(1)求剩余草坪的面积是多少平方米?(2)若,,求剩余草坪的面积是多少平方米?21.(6分)计算:(x﹣2)2﹣(x﹣3)(x+3)22.(8分)小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600名八年级学生,则晚上学习时间超过1.5小时的约有多少名学生?23.(8分)如图,在中,是的平分线,于,于,试猜想与之间有什么关系?并证明你的猜想.24.(8分)在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则根据材料回答问题:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.25.(10分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式26.(10分)化简求值或解方程(1)化简求值:(2x−1x+1﹣x+1)÷x−2x2(2)解方程:6x2−1
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、,故本选项错误;
B、,故本选项错误;
C、是整式的乘法,不是分解因式,故本选项错误;
D、符合因式分解的意义,是因式分解,故本选项正确;故选:D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.3、D【分析】根据垂直平分线的性质和已知三角形的周长进行计算即可求得结果.【详解】解:∵DE是BC的中垂线,∴BE=EC,则AB=EB+AE=CE+EA,又∵△ACE的周长为11,故AB=11−4=1,直线DE上任意一点到A、C距离和最小为1.故选:D.【点睛】本题考查的是轴对称—最短路线问题,线段垂直平分线的性质(垂直平分线上任意一点到线段两端点的距离相等)有关知识,难度简单.4、D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5、B【解析】根据分母不为零分式有意义,可得答案.【详解】A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=-1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选B.【点睛】本题考查了分式有意义的条件,分母不为零分式有意义.6、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、B【分析】先分别求出32℃、33℃、34℃、36℃和35℃的天数,然后根据平均数的公式计算即可.【详解】解:∵10×10%=1(天),10×20%=2(天),10×30%=3(天),∴最高气温是32℃的天数有1天,最高气温是33℃、34℃和36℃的天数各有2天,最高气温是35℃的天数有3天,∴这天日最高气温的平均值是(32×1+33×2+34×2+36×2+35×3)÷10=故选B.【点睛】此题考查的是求平均数,掌握平均数的公式是解决此题的关键.8、B【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【详解】A选项:1+2=3,所以不能构成三角形;B选项:2+3>4,所以能构成三角形;C选项:10+20<35,所以不能构成三角形;D选项:4+4<9,所以不能构成三角形;故选:B.【点睛】考查了三角形的三边关系.解题关键利用了三角形的三边关系:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.9、C【解析】依据三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形.【详解】解:∵三角形的一个外角与它相邻的内角和为180°,而这个外角小于它相邻的内角,∴与它相邻的这个内角大于90°,∴这个三角形是钝角三角形.故选:C.【点睛】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.10、B【分析】根据三人说法都错了得出不等式组解答即可.【详解】根据题意可得:,可得:,∴故选B.【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.二、填空题(每小题3分,共24分)11、①②④【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=AD,DF=AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.故①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故答案为①②④【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.13、1【解析】根据得到AC∥DE,,再根据平分得到,根据平行的性质即可求出的度数.【详解】∵∴AC∥DE,,∵平分∴又AC∥DE∴=故答案为:1.【点睛】此题主要考查角度求解,解题的关键是熟知平行线的性质与判定.14、【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,
作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,
∴∠BOP=∠BPQ=∠PRQ=90°,
∴∠BPO=∠PQR,
∵OA=OB=4,
∴∠OBA=∠OAB=45°,
∵M(-1,0),
∴OP=OM=1,
∴BP=BM,
∴∠OBP=∠OBM=∠ABN,
∴∠PBQ=∠OBA=45°,
∴PB=PQ,
∴△OBP≌△RPQ(AAS),
∴RQ=OP=1,PR=OB=4,
∴OR=5,
∴Q(5,1),∴直线BN的解析式为y=−x+4,将N(5m,3m+2)代入y=−x+4,得3m+2=﹣×5m+4解得m=,∴N.故答案为:【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.15、3【分析】根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.16、x>-1.【分析】根据一次函数的图象和两函数的交点横坐标即可得出答案.【详解】∵一次函数与一次函数的图像相交于点,交点横坐标为:x=-1,∴不等式的解集是x>-1.故答案为:x>-1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.17、-3【分析】根据分式的值为零的条件可以求出的值.【详解】由分式的值为零的条件得,,
由,得,
∴或,
由,得.
综上,得.
故答案是:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.18、1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当=2时,=2,x≠2解得x=1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.三、解答题(共66分)19、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.20、(1);(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将,代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:平方米;(2)当时,=1,即时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.21、﹣4x+1.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:(x﹣2)2﹣(x﹣3)(x+3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+1.【点睛】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22、(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5小时的约有450名学生.【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;
(2)根据人数、中位数的定义求解可得;
(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,
∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有(人)答:晚上学习时间超过1.5小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、详见解析【分析】根据角平分线性质得DE=DF,再根据等腰三角形性质得AE=AF,可证AD是EF的垂直平分线.【详解】AD⊥EF,AD平分EF,
证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
∴∠DEF=∠DFE,
∵DE⊥AB,DF⊥AC,
∴∠DEA=∠DFA=90°,
∴∠DEA-∠DEF=∠DFA-∠DFE,
即∠AEF=∠AFE,
∴AE=AF,
∴A在EF的垂直平分线上,
∵DE=DF,
∴D在EF的垂直平分线上,
即AD是EF的垂直平分线,
∴AD⊥EF,AD平分EF.【点睛】考核知识点:线段垂直平分线,角平分线性质.灵活运用角平分线性质和线段垂直平分线判定是关键.24、(1)5;(2);(3)【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设===k(k≠0),则a=5k,b=2k,c=3k,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设===(k≠0),化简得:①,②,③,相加变形可得x、y、z的代入=中,可得k的值,从而得结论;解法二:取倒数得:==,拆项得,从而得x=,z=,代入已知可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司外部合规管理制度
- 广东电气安全管理制度
- 工装室内施工管理制度
- 医院稀缺药物管理制度
- 初创公司人力管理制度
- 口腔诊疗后续管理制度
- 宾馆日常安全管理制度
- 医院导管滑脱管理制度
- 内室装修现场管理制度
- 工厂贸易邮件管理制度
- 110kV钢管杆技术规范书
- 水泥道路路面修复施工方案
- 信息技术在旅游行业的变革与升级考核试卷
- PROJECT项目管理软件使用教程
- 全国教育科学规划课题立项申请书范文
- 2024年上海市普通高中学业水平合格性考试物理试题及答案
- 心脏康复基层指南
- 《财务管理项目投资》课件
- IP授权合作框架协议
- 社会学概论-终结性考核-国开(SC)-参考资料
- 2025届江苏省南师附中高考数学考前最后一卷预测卷含解析
评论
0/150
提交评论