湖南省长沙市明徳旗舰2022-2023学年九年级数学第一学期期末达标检测模拟试题含解析_第1页
湖南省长沙市明徳旗舰2022-2023学年九年级数学第一学期期末达标检测模拟试题含解析_第2页
湖南省长沙市明徳旗舰2022-2023学年九年级数学第一学期期末达标检测模拟试题含解析_第3页
湖南省长沙市明徳旗舰2022-2023学年九年级数学第一学期期末达标检测模拟试题含解析_第4页
湖南省长沙市明徳旗舰2022-2023学年九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.

B.

C.

D.12.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大3.若3a=5b,则a:b=()A.6:5 B.5:3 C.5:8 D.8:54.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1: B.1:2 C.1:4 D.1:1.65.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.6.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A. B. C. D.7.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.218.如图,以为顶点的三角形与以为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:29.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率10.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1二、填空题(每小题3分,共24分)11.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.12.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.13.方程的解是_____.14.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.15.如图,点在反比例函数的图象上,过点作坐标轴的垂线交坐标轴于点、,则矩形的面积为_________.16.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。17.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.18.6与x的2倍的和是负数,用不等式表示为.三、解答题(共66分)19.(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.(1)求反比例函数和一次函数的表达式;(2)直接写出关于的不等式的解集.20.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(6分)如图,点E为□ABCD中一点,EA=ED,∠AED=90º,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.(1)若AH=6,FH=2,求AE的长;(2)求证:∠P=45º;(3)若DG=2PG,求证:∠AGE=∠EDG.22.(8分)消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.23.(8分)某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图所示两幅不完整的统计图,请根据统计图回答下列问题:(1)补全条形统计图并填空,本次调查的学生共有名,估计该校2000名学生中“不了解”的人数为.(2)“非常了解”的4人中有A1、A2两名男生,B1、B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到两名男生的概率.24.(8分)如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.25.(10分)在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树形图如下:小华列出表格如下:第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?26.(10分)某中学举行“中国梦,我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定分别从本次比赛中获利A、B两个等级的学生中,各选出1名学生培训后搭档去参加市中学生演讲比赛,已知甲的等级为A,乙的等级为B,求同时选中甲和乙的概率.

参考答案一、选择题(每小题3分,共30分)1、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.2、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;

∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.【点睛】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.3、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果.【详解】解:∵3a=5b,∴=,故选:B.【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.4、C【分析】中位线将这个三角形分成的一个小三角形与原三角形相似,根据中位线定理,可得两三角形的相似比,进而求得面积比.【详解】根据三角形中位线性质可得,小三角形与原三角形相似比为1:2,则其面积比为:1:4,故选C.【点睛】本题考查了三角形中位线的性质,比较简单,关键是知道面积比等于相似比的平方.5、D【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB,A、当∠AED=∠B时,△ABC∽△AED,故本选项不符合题意;B、当∠ADE=∠C时,△ABC∽△AED,故本选项不符合题意;C、当=时,△ABC∽△AED,故本选项不符合题意;D、当=时,不能推断△ABC∽△AED,故本选项符合题意;故选D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6、B【解析】分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值:tan∠AOB=.故选B.7、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.8、A【分析】通过观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,即可得出结论.【详解】解:观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,∵BC=12,EF=6,∴.故选A.【点睛】此题重点考察学生对相似三角形性质的理解,掌握相似三角形性质是解题的关键.9、D【详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.10、A【解析】试题分析:∵反比例函数中,k=-4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故选A.考点:反比例函数图象上点的坐标特征.二、填空题(每小题3分,共24分)11、【解析】由图象可得k=9.5,进而得出V=1.9m1时,ρ的值.【详解】解:设函数关系式为:V=,由图象可得:V=5,ρ=1.9,代入得:k=5×1.9=9.5,故V=,当V=1.9时,ρ=5kg/m1.故答案为5kg/m1.【点睛】本题考查的是反比例函数的应用,正确得出k的值是解题关键.12、或1.【解析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【详解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,当点P在线段AB上时,如题图1所示:∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴即解得:∴当点P在线段AB的延长线上时,如题图2所示:∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×3=1.综上所述,当△PQB为等腰三角形时,AP的长为或1.故答案为或1.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.13、x1=2,x2=﹣1【解析】解:方程两边平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.经检验,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.14、20°【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.15、1【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵PA⊥x轴于点A,PB⊥y轴于B点,

∴矩形AOBP的面积=|1|=1.

故答案为:1.【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17、240m【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.18、6+2x<1【解析】试题分析:6与x的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.解:x的2倍为2x,6与x的2倍的和写为6+2x,和是负数,∴6+2x<1,故答案为6+2x<1.三、解答题(共66分)19、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵,点A(5,2),点B(2,3),

又∵点C在y轴负半轴,点D在第二象限,

∴点C的坐标为(2,-1),点D的坐标为(-1,3).

∵点在反比例函数y=的图象上,

∴反比例函数的表达式为

将A(5,2)、B(2,-1)代入y=kx+b,

,解得:∴一次函数的表达式为.

(1)将代入,整理得:

∴一次函数图象与反比例函数图象无交点.

观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,

∴不等式>kx+b的解集为x<2.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问题.21、(1);(2)见详解;(3)见详解【分析】(1)在Rt△ADH中,设AD=DF=x,则DH=x-2,由勾股定理,求出AD的长度,由等腰直角三角形的性质,即可求出AE的长度;(2)根据题意,设∠ADF=2a,则求出∠FAH=,然后∠ADG=∠AGD=,再根据三角形的外角性质,即可得到答案;(3)过点A作AM⊥DP于点M,连接EM,EF,根据等腰直角三角形的判定和性质,全等三角形的判定和性质,得到角之间的关系,从而通过等量互换,即可得到结论成立.【详解】解:(1)∵AG⊥DF于点H,∴∠AHD=90°,∵AH=6,FH=2,在Rt△ADH中,设AD=DF=x,则DH=DFFH=x-2,由勾股定理,得:,∴,∴,即AD=DF=AG=10,∵EA=ED,∠AED=90º,∴△ADE是等腰直角三角形,∴AE=DE=;(2)如图:∵∠AED=90º,AG⊥DF,∴∠EAH=∠EDH,设∠ADF=2a,∵DA=DF,则∠AFH=∠DAF=,∴∠FAH=,∴∠DAH=,∵AD=AG,∴∠ADG=∠AGD=,∴;(3)过点A作AM⊥DP于点M,连接EM,EF,如图:∵AD=AG,DG=2PG,∴PG=GM=DM,∵∠P=45°,∴△APM是等腰直角三角形,∴AM=PM=DG,∵∠ANO=∠DNM,∠AED=∠AMD=90°,∴∠OAM=∠ODG,∵AE=DE,AM=DG,∴△AEM≌△DEG,∴EM=EG,∠AEM=∠DEG,∴∠AED+∠DEM=∠DEM+∠MEG,∴∠MEG=∠AED=90°,∴△MEG是等腰直角三角形;∴∠EMG=45°,∵AM⊥DP,∴∠AME=∠EMG=45°,∴ME是∠AMP的角平分线,∵AM=PM,∴ME⊥AP,∵∠AOH=∠DOE,∴∠OAH=∠ODE,∴△AEG≌△DEF(SAS),∴∠AEG=∠DEF,∴∠AED+∠AEF=∠AEF+∠FEG,∴∠FEG=∠AED=90°,∴∠FEG+∠MEG=180°,即点F、E、M,三点共线,∴MF⊥AP,∵AM平分∠DAG,∴∠GAM=∠DAM,∵∠EAN+∠DAM=45°,∴∠EAN+∠GAM=45°,∵∠PAG+∠GAM=45°,∴∠EAN=∠PAG,∵∠PAG+∠AFH=∠DFE+∠AFH=90°,∴∠EAN=∠PAG=∠DFE,∵△AEG≌△DEF,∴∠AGE=∠DFE=∠EAN,∵∠EAN=∠EDM,∴∠AGE=∠EDM,∴∠AGE=∠EDG.【点睛】本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,三角形的内角和定理,以及角平分线的性质,解题的关键是熟练掌握所学的性质进行证明,注意正确做出辅助线,找出角之间的关系,边之间的关系,从而进行证明.22、(1);(2)小月获奖的机会更大些,理由见解析【分析】(1)根据概率公式直接求解即可;(2)首先根据题意分别画出树状图,然后由树状图即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【详解】解:(1)有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,则小杨获奖的概率;(2)设两张笑脸牌分别为笑,笑,两张哭脸牌分别为哭,哭,画树状图如下:小月:∵共有种等可能的结果,翻开的两张纸牌中出现笑脸的有种情况,∴小月获奖的概率是:;小杨:∵共有种等可能的结果,翻开的两张纸牌中出现笑脸的有种情况,∴小杨获奖的概率是:;∵,∴,∴小月获奖的机会更大些.【点睛】此题考查了列表法或树状图法求概率,注意小杨属于不放回实验,小月属于放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)图详见解析,50,600;(2).【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,继而由各了解程度的人数之和等于总人数求得“不了解”的人数,用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好抽到2名男生的结果数,利用概率公式计算可得.【详解】解:(1)本次调查的学生总人数为4÷8%=50人,则不了解的学生人数为50﹣(4+11+20)=15人,∴估计该校2000名学生中“不了解”的人数约有2000×=600人,补图如下:故答案为:50、600;(2)画树状图如下:共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P(恰好抽到2名男生)==.【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24、(1)y=;(2)﹣1<x<0或x>3;(3)【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论