2022年四川省遂宁市船山区第二中学数学九上期末质量跟踪监视模拟试题含解析_第1页
2022年四川省遂宁市船山区第二中学数学九上期末质量跟踪监视模拟试题含解析_第2页
2022年四川省遂宁市船山区第二中学数学九上期末质量跟踪监视模拟试题含解析_第3页
2022年四川省遂宁市船山区第二中学数学九上期末质量跟踪监视模拟试题含解析_第4页
2022年四川省遂宁市船山区第二中学数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为()A. B.C. D.2.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)3.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.4.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<45.如图,矩形的中心为直角坐标系的原点,各边分别与坐标轴平行,其中一边交轴于点,交反比例函数图像于点,且点是的中点,已知图中阴影部分的面积为,则该反比例函数的表达式是()A. B. C. D.6.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.37.如图,抛物线的对称轴为直线,与轴的个交点坐标为,,其部分图象如图所示,下列结论:①;②方程的两个根是,;③;④当时,的取值范围是.其中结论正确的个数是()A. B. C. D.8.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.9.当取何值时,反比例函数的图象的一个分支上满足随的增大而增大()A. B. C. D.10.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140° B.130° C.120° D.110°11.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线线x=2D.当x>2时,y随x的增大而增大12.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根二、填空题(每题4分,共24分)13.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)14.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.15.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________16.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).17.如图AC,BD是⊙O的两条直径,首位顺次连接A,B,C,D得到四边形ABCD,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.18.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.三、解答题(共78分)19.(8分)综合与探究:三角形旋转中的数学问题.实验与操作:

Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).20.(8分)已知中,,,、分别是、的中点,将绕点按顺时针方向旋转一个角度得到,连接、,如图1(1)求证,(2)如图2,当时,设与,,交于点,求的值.21.(8分)某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?22.(10分)如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.23.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?24.(10分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半径.25.(12分)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.26.抛物线与轴交于两点(点在点的左侧),且,,与轴交于点,点的坐标为(0,-2),连接,以为边,点为对称中心作菱形.点是轴上的一个动点,设点的坐标为,过点作轴的垂线交抛物线与点,交于点.(1)求抛物线的解析式;(2)轴上是否存在一点,使三角形为等腰三角形,若存在,请直接写出点的坐标;若不存在,请说明理由;(3)当点在线段上运动时,试探究为何值时,四边形是平行四边形?请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意利用基本数量关系即商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】解:由题意可列方程是:.故选:D.【点睛】本题考查一元二次方程的应用最基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格.2、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.3、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【点睛】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5、B【分析】根据反比例函数的对称性以及已知条件,可得矩形的面积是8,设,则,根据,可得,再根据反比例函数系数的几何意义即可求出该反比例函数的表达式.【详解】∵矩形的中心为直角坐标系的原点O,反比例函数的图象是关于原点对称的中心对称图形,且图中阴影部分的面积为8,

∴矩形的面积是8,

设,则,

∵点P是AC的中点,

∴,

设反比例函数的解析式为,

∵反比例函数图象于点P,

∴,

∴反比例函数的解析式为.

故选:B.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数系数的几何意义,得出矩形的面积是8是解题的关键.6、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.7、B【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另个交点坐标为(3,0),则可对②进行判断;由对称轴方程可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断.【详解】∵观察函数的图象知:抛物线与轴有2个交点,

∴>0,所以①错误;∵抛物线的对称轴为直线,

而点关于直线的对称点的坐标为,

∴方程的两个根是,所以②正确;∵抛物线的对称轴为,即,∴,所以③正确;∵抛物线与轴的两点坐标为,,且开口向下,

∴当y>0时,的取值范围是,所以④正确;综上,②③④正确,正确个数有3个.故选:B.【点睛】本题考查了二次函数图象与系数的关系,关键是掌握对于二次函数,二次项系数a决定抛物线的开口方向和大小;一次项系数b和二次项系数a共同决定对称轴的位置;常数项c决定抛物线与y轴交点位置;抛物线与x轴交点个数由决定.8、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、B【解析】根据反比例函数的性质可得:∵的一个分支上y随x的增大而增大,∴a-3<0,

∴a<3.故选B.10、B【分析】根据圆周角定理求出∠ACB,根据三角形内角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【详解】∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四点共圆,∴∠D+∠B=180°,∴∠D=130°,故选:B.【点睛】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.11、B【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【详解】∵y=x2﹣4x+4=(x﹣2)2,∴抛物线开口向上,对称轴为x=2,当x>2时,y随x的增大而增大,∴选项A、C、D说法正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B选项说法错误.故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,掌握二次函数的顶点式是解答本题的关键,即在y=a(x﹣h)2+k中,其对称轴为x=h,顶点坐标为(h,k).12、C【解析】试题分析:利用根的判别式进行判断.解:∵∴此方程无实数根.故选C.二、填空题(每题4分,共24分)13、不公平.【分析】先根据题意画出树状图,然后根据概率公式求解即可.【详解】画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是,乙获胜的概率是所以这个游戏不公平.【点睛】解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.14、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【点睛】本题考查扇形面积,解题的关键是掌握扇形面积公式.15、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.16、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.17、【分析】首先证明△BOC是等边三角形及△OBC≌△AOD(SAS),进而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S阴=2•S扇形OAD,再利用扇形的面积公式计算即可;【详解】解:∵AC是直径,

∴∠ABC=∠ADC=90°,

∵∠BAC=30°,AD=3,

∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,

∵OC=OB=OA=OD,

∴△OBC与△AOD是等边三角形,

∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中点,

∴S△AOD=S△DOC=S△BOC=S△AOB,

∴S阴=2•S扇形OAD=,故答案为:.【点睛】本题考查扇形的面积公式、解直角三角形、等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18、.【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.三、解答题(共78分)19、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)【分析】(1)①根据矩形的性质、旋转的性质、等边三角形的判定方法解题;②根据两组对边分别平行的四边形是平行四边形解题;(2)过点作的垂线,交于点E,由旋转的性质得到对应边、对应角相等,进而证明△CDB≌△,即可解题;(3)先证明,再由相似三角形的性质解题,进而证明即可证明.【详解】解:(1)①60;②四边形AB′DC是平行四边形.证明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴∠C′AB′=∠CAB=60°,,.与都是等边三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四边形AB′DC是平行四边形.(2)证明:过点作的垂线,交于点E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:设AC与D交于点O,连接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,

【点睛】本题考查几何综合,其中涉及三角形的旋转、等边三角形的判定与性质、平行线的判定、平行四边形的判定、全等三角形的判定等知识,综合性较强,是常见考点,掌握相关知识、学会作适当辅助线是解题关键.20、(1)见解析;(2)【分析】(1)首先依据旋转的性质和中点的定义证明,然后再利用SAS证明,再利用全等三角形的性质即可得到答案;(2)连接,先证明是等边三角形。然后再证为直角三角形,再证,最后依据相似三角形的性质即可得出答案.【详解】解:(1)证明∵,,分别是,的中点,∴由旋转的性质可知:∴,∴,∴(2)连接∵,∴是等边三角形∴∴,∴,∵,∴,∴又∵,∴∴,∵在中,,∴【点睛】本题是一道综合题,考查了全等的判定与性质和相似三角形的判定与性质,能够充分调动所学知识是解题的关键.21、(1)w=﹣2x2+240x﹣2200(50≤x≤80);(2)影院将电影票售价定为60元/张时,每天获利最大,最大利润是1元.【分析】(1)根据“每天利润=电影票张数×售价-每天运营成本”可得函数解析式;

(2)将(1)中所得函数解析式配方成顶点式,再利用二次函数的性质可得答案.【详解】解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+1.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为1.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是1元.【点睛】本题主要考查二次函数的应用,解题的关键是根据“每天利润=电影票张数×售价-每天运营成本”列出函数解析式并熟练运用二次函数的性质求出最值.22、(1)如图所示,△A1B1O即为所求;见解析;(2)线段AO旋转时扫过的面积为.【分析】(1)根据题意,画出图形即可;(2)先根据勾股定理求出AO,再根据扇形的面积公式计算即可.【详解】解:(1)根据题意,将△OAB绕点O顺时针旋转90°,如图所示,△A1B1O即为所求;(2)根据勾股定理:线段AO旋转时扫过的面积为:=.【点睛】此题考查的是图形的旋转和求线段旋转时扫过的面积,掌握图形旋转的性质和扇形的面积公式是解决此题的关键.23、树高为米.【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由BE=BD+DE可求出BE的长,根据求出AB的长即可.【详解】延长和相交于点,则就是树影长的一部分,∵某一时刻测得高为的竹竿影长为,∴,∵AB//CD,∴△AEB∽△CED,∴,∴,∴,∴,∴,∴即树高为米.【点睛】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.24、(1)详见解析;(2)⊙O的半径是.【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD过O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半径是.【点睛】此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.25、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论