版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.对于反比例函数,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小2.已知二次函数y=x2+2x-m与x轴没有交点,则m的取值范围是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠03.已知抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y1),D(5,y2)四点,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定4.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B. C. D.5.圆内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.1:: C.::1 D.无法确定6.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为()A. B. C. D.7.把二次函数化成的形式是下列中的()A. B.C. D.8.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线 B.三条中线C.三条角平分线 D.三条高9.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)10.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米二、填空题(每小题3分,共24分)11.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.12.若方程的一个根,则的值是__________.13.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.14.如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90°,AD=3,BD=5,则△ABC的面积为_____.15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球_____只.16.已知方程有一个根是,则__________.17.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.18.如图,在平面直角坐标系中,已知函数和,点为轴正半轴上一点,为轴上一点,过作轴的垂线分别交,的图象于,两点,连接,,则的面积为_________.三、解答题(共66分)19.(10分)如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.20.(6分)在△ABC中,∠ACB=90°,BC=kAC,点D在AC上,连接BD.(1)如图1,当k=1时,BD的延长线垂直于AE,垂足为E,延长BC、AE交于点F.求证:CD=CF;(2)过点C作CG⊥BD,垂足为G,连接AG并延长交BC于点H.①如图2,若CH=CD,探究线段AG与GH的数量关系(用含k的代数式表示),并证明;②如图3,若点D是AC的中点,直接写出cos∠CGH的值(用含k的代数式表示).21.(6分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.22.(8分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.23.(8分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直线与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.24.(8分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.求解体验(1)①关于的一次函数的图象过定点_________.②关于的二次函数的图象过定点_________和_________.知识应用(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.拓展应用(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.25.(10分)某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:电动车,:公交车,:家庭汽车,:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民,其中“:公交车”选项的有人;扇形统计图中,项对应的扇形圆心角是度;(2)若甲、乙两人上班时从、、、四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.26.(10分)受全国生猪产能下降的影响,猪肉价格持续上涨,某超市猪肉8月份平均价格为25元/斤,10月份平均价格为36元/斤,求该超市猪肉价格平均每月增长的百分率.
参考答案一、选择题(每小题3分,共30分)1、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化2、A【分析】函数y=x2+2x-m的图象与x轴没有交点,用根的判别式:△<0,即可求解.【详解】令y=0,即:x2+2x-m=0,△=b2−4ac=4+4m<0,即:m<-1,故选:A.【点睛】本题考查的是二次函数图象与x轴的交点,此类题目均是利用△=b2−4ac和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.3、A【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案.【详解】∵抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),∴抛物线的对称轴是:直线x=-1,且开口向下,∵C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,∴y1>y2,故选A.【点睛】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键.4、C【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.5、C【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【详解】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°R,故BC=2BDR;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE,故BCR;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°R,AB=2AG=R,∴圆内接正三角形、正方形、正六边形的边长之比为R:R:R::1.故选:C.【点睛】本题主要考查了正多边形和圆,掌握正多边形和圆是解题的关键.6、D【分析】先证明△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方求解即可.【详解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的两部分面积相等,∴△ADE:△ABC=1:2,∴.故选D.【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方.7、C【分析】先提取二次项系数,然后再进行配方即可.【详解】.故选:C.【点睛】考查了将一元二次函数化成y=a(x-h)2+k的形式,解题关键是正确配方.8、A【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.9、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.10、A【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ²+CQ²=BC²可得(4x)²+(3x)²=102,解得:x=2或x=−2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=≈13.1,∴AB=AP−BQ−PQ=13.1−6−2=5.1,故选A.点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二、填空题(每小题3分,共24分)11、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.12、【分析】将m代入方程,再适当变形可得的值.【详解】解:将m代入方程得,即,所以.故答案为:2020.【点睛】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.13、【分析】利用同一时刻实际物体与影长的比值相等进而求出即可.【详解】设小亮的影长为xm,由题意可得:,解得:x=.故答案为:.【点睛】此题主要考查了相似三角形的应用,正确利用物体高度与影长的关系是解题关键.14、1【分析】直接利用切线长定理得出AD=AF=3,BD=BE=5,FC=EC,再结合勾股定理得出FC的长,进而得出答案.【详解】解:∵Rt△ABC的内切圆⊙I分别与斜边AB、直角边BC、CA切于点D、E、F,AD=3,BD=5,∴AD=AF=3,BD=BE=5,FC=EC,设FC=EC=x,则(3+x)2+(5+x)2=82,整理得,x2+8x﹣5=0,解得:(不合题意舍去),则,故Rt△ABC的面积为故答案为1.【点睛】本题考查了切线长定理和勾股定理,解决本题的关键是正确理解题意,熟练掌握切线长定理的相关内容,找到线段之间的关系.15、1.【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=1,经检验,x=1是原方程的解,所以袋中共有小球1只.故答案为1.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.16、1【分析】把方程的根x=1代入即可求解.【详解】把x=1代入得:1-m+n=0m-n=1故答案为:1【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.17、【分析】连接AE,由旋转性质知AD=AB′=3、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】解:如图,连接AE,∵将边长为3的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=3,∠BAB′=30°,∠DAB=90°∴∠B′AD=60°,在Rt△ADE和Rt△AB′E中,,∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=∠B′AD=30°,∴DE=ADtan∠DAE=3×=,故答案为.【点睛】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理.18、1【分析】根据题意设点,则,再根据三角形面积公式求解即可.【详解】由题意得,设点,则∴故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、三角形面积公式是解题的关键.三、解答题(共66分)19、(1)如图所示,△A1B1O即为所求;见解析;(2)线段AO旋转时扫过的面积为.【分析】(1)根据题意,画出图形即可;(2)先根据勾股定理求出AO,再根据扇形的面积公式计算即可.【详解】解:(1)根据题意,将△OAB绕点O顺时针旋转90°,如图所示,△A1B1O即为所求;(2)根据勾股定理:线段AO旋转时扫过的面积为:=.【点睛】此题考查的是图形的旋转和求线段旋转时扫过的面积,掌握图形旋转的性质和扇形的面积公式是解决此题的关键.20、(1)证明见解析;(2)①,证明见解析;②cos∠CGH=.【分析】(1)只要证明△ACF≌△BCD(ASA),即可推出CF=CD.(2)结论:.设CD=5a,CH=2a,利用相似三角形的性质求出AM,再利用平行线分线段成比例定理即可解决问题.(3)如图3中,设AC=m,则BC=km,m,想办法证明∠CGH=∠ABC即可解决问题.【详解】(1)证明:如图1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:结论:.理由:如图2中,作AM⊥AC交CG的延长线于M.∵CG⊥BD,MA⊥AC,∴∠CAM=∠CGD=∠BCD=90°,∴∠ACM+∠CDG=90°,∠ACM+∠M=90°,∴∠CDB=∠M,∴△BCD∽△CAM,∴=k,∵CH=CD,设CD=5a,CH=2a,∴AM=,∵AM∥CH,∴,∴.(3)解:如图3中,设AC=m,则BC=km,m,∵∠DCB=90°,CG⊥BD,∴△DCG∽△DBC,∴DC2=DG•DB,∵AD=DC,∴AD2=DG•DB,∴,∵∠ADG=∠BDA,∴△ADG∽△BDA,∴∠DAG=∠DBA,∵∠AGD=∠GAB+∠DBA=∠GAB+∠DAG=∠CAB,∵∠AGD+∠CGH=90°,∠CAB+∠ABC=90°,∴∠CGH=∠ABC,∴.【点睛】本题为四边形综合探究题,考查相似三角形、三角函数等知识,解题时注意相似三角形的性质和平行线分线段成比例定理的应用.21、(1);(2).【分析】(1)将点代入中即可求出k的值,求得反比例函数的解析式;(2)根据题意列出方程组,根据点在第一象限解出方程组即可.【详解】(1)一次函数的图象经过点反比例函数的解析式为(2)由已知可得方程组,解得或经检验,当或时,,所以方程组的解为或∵点在第一象限∴【点睛】本题考查了一次函数和反比例函数的问题,掌握一次函数和反比例函数的性质、解二元一次方程组的方法是解题的关键.22、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.23、(1)①1,3;②;(2),.【分析】(1)①根据图形M,N间的“近距离”的定义结合已知条件求解即可.②根据可及图形的定义作出符合题意的图形,结合图形作答即可;(2)分两种情况进行讨论即可.【详解】(1)①如图:根据近距离的定义可知:d(A,⊙O)=AC=2-1=1.过点B作BE⊥x轴于点E,则OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案为1,3.②∵由题意可知直线与⊙O互为“可及图形”,⊙O的半径为2,∴.∴.∴.(2)①当⊙G与边OD是可及图形时,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②当⊙G与边CD是可及图形时,如图,过点G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距离的定义可知d(E,⊙G)的最大值为1,∴此时EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根据对称性,OG的最大值为5+2.∴综上所述,m的取值范围为:或【点睛】本题主要考查了圆的综合知识,正确理解“近距离”和“可及图形”的概念是解题的关键.24、(1)①;②;(2)直线上的定点为;(3)点为【分析】(1)①由可得y=k(x+3),当x=﹣3时,y=0,故过定点(﹣3,0),即可得出答案.②由,当x=0或x=1时,可得y=2020,即可得出答案.(2)由题意可得,直线AB的函数式,根据相似三角形的判定可得,进而根据相似三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业信用管理经验分享会
- 通信线路维护员聘用合同
- 证券交易违规行为处罚办法
- 食品饮料行业设施管理准则
- 2025版山皮石石材电商平台合作框架协议3篇
- 2024年能源行业担保责任与节能减排合同3篇
- 药房环境保护措施
- 2024年装饰公司员工离职与补偿合同范本3篇
- 2025年度住宅小区窗帘清洗与保养服务合同3篇
- 网络直播反三违内容监管
- 小学信息科技《数据与编码-探索生活中的“编码”》教学设计
- 工程款代扣代付款协议书(2篇)
- 2024年湖北省高考化学试卷真题(含答案解析)
- 物业充电桩合作加盟协议书范文
- 2023春国开会计实务专题形考任务4题库1及答案
- 现有民办学校选择登记为营利性民办学校办理流程
- 机械工安全操作规程有哪些(11篇)
- 期末测试卷(一)(试题)2023-2024学年二年级上册数学苏教版
- 2024中国华电集团限公司校招+社招高频难、易错点500题模拟试题附带答案详解
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 【飞科电器公司基于杜邦分析法的财务分析案例(7700字论文)】
评论
0/150
提交评论